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ABSTRACT

Crowd counting is a challenging task due to the issues such as

scale variation and perspective variation in real crowd scenes.

In this paper, we propose a novel Cascaded Residual Density

Network (CRDNet) in a coarse-to-fine approach to generate

the high-quality density map for crowd counting more accu-

rately. (1) We estimate the residual density maps by multi-

scale pyramidal features through cascaded residual density

modules. It can improve the quality of density map layer

by layer effectively. (2) A novel additional local count loss

is presented to refine the accuracy of crowd counting, which

reduces the errors of pixel-wise Euclidean loss by restricting

the number of people in the local crowd areas. Experiments

on two public benchmark datasets show that the proposed

method achieves effective improvement compared with the

state-of-the-art methods.

Index Terms— Crowd counting, Scale variation, CRD-

Net, Local count loss

1. INTRODUCTION

With the extensive use of urban monitoring systems, crowd

counting is becoming increasingly important in the field of

public security and attracts a lot of attention in recent years.

Estimating the number of crowds accurately can effectively

solve the problems of crowd control, crowd gathering mon-

itoring and overload warning in practical applications. Fur-

thermore, the method of crowd density estimation and count-

ing can be extended to other fields like vehicle counting, ur-

ban building density estimation, etc. However, it is still a

challenging work to generate the high-quality crowd density

map for crowd counting. The major obstacle comes from the

large scale variation in surveillance videos.

Recent works based on Convolutional Neural Networks

utilize multi-scale architectures to address the problem of

scale variation and have made great progress in crowd density

estimation. For example, the multi-column networks [1, 2, 3]

were proposed by using multiple parallel columns with dif-

ferent filter sizes (large, medium, small). In such networks,

the different column CNN learned different scale features to

adaptive to a large variation in people or head size due to

the camera perspective. Besides, the Multi-scale Network [4]

based on the Inception-like Module was used to extract the

scale-relevant features which could generate the crowd den-

sity map with various scales.

However, the above methods suffer inherent disadvan-

tages. On the one hand, those algorithms utilize different fil-

ter sizes to extract corresponding features at different scales,

but the performance is restricted by the types of filter. It may

result in a lower quality of the estimated density map. On

the other hand, most of the algorithms adopt pixel-wise Eu-

clidean loss to optimize networks. As we know, the Euclidean

loss is sensitive to outliers and blur the generated image [5],

which may affect the accuracy of crowd counting.

In this paper, to deal with these issues, we propose a novel

crowd counting network named Cascade Residual Density

Network (CRDNet), which adopts U-Net architecture [6] that

consists of an encoder and a decoder. Unlike previous ap-

proaches, where multiple filters with different kernel sizes are

needed to extract multi-scale features for estimating crowd

density map, the proposed CRDNet approach utilizes pyra-

midal feature extraction inspired by [7] in the encoder, which

has more scale context information including strong semantic

features and weak semantic features at different levels from

a single input image scale. More importantly, in the pro-

posed decoder, the high-quality crowd density map is esti-

mated by summing up the residual density map in a coarse-

to-fine framework. At each level of the pyramid, the proposed

residual density module learns the residual density map for

correcting the estimated density map of the previous level.

Firstly, the stacked residual modules integrate the features at

all scales naturally, which can be more robust to scale vari-

ation in the task of crowd counting. Secondly, the cascaded

structure progressively improves the resolution and quality of

density maps by estimating the residual density maps without

passing more errors to the next level. Therefore the proposed

architecture estimates the crowd density map layer by layer

that can improve the accuracy of crowd counting effectively.

Furthermore, considering that the Euclidean loss only fo-

cuses on the errors of individual pixels, it is usually affected

by outlier pixels. In this paper, an additional local count loss,

which is defined as the errors of crowd counting between the

estimated density map and the ground truth in local areas, is
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Fig. 1. The network structure of CDRNet, which consists of the encoder (PNet) and the decoder (CNet). PNet generates the

pyramid of multi-scale features. And CNet estimates the density map through the cascaded residual density modules.

proposed to describe the accuracy of the total number of the

local crowd rather than the single pixel. It can regularize the

estimated density map and reduce the counting error caused

by the Euclidean loss. The experiment results demonstrate

that it can greatly improve the performance. In summary, the

key highlights of the work are:

(1) The cascaded density residual network is proposed to

generate the high-quality crowd density map from coarse to

fine through stacked residual density modules in a pyramid of

multi-scale features.

(2) An additional local count loss is designed to minimize

the errors of local crowd counting not only the pixel value,

which constrains the Euclidean distance between estimated

density map and the ground truth pixels. It improves the

whole quality of estimated crowd density maps effectively.

2. RELATED WORKS

In recent years, various approaches have been proposed in

the literature for crowd counting. Early traditional crowd

counting methods that use hand-crafted features can be clas-

sified into the two categories: (1) Detection-based methods,

(2) Regression-based methods.

In detection-based methods, the number of crowds is cal-

culated by detecting the individual entities in the scene [8, 9,

10, 11]. Although such approaches have achieved good re-

sults in low-density scenes, the problem of occlusion among

people in the high-density crowds adversely affects the per-

formance of accurate detection. In regression-based methods,

researchers avoid detecting the people in the scene but turn the

crowd counting into regression problem by learning a map-

ping between holistic or local features extracted from images

to their count [12, 13, 14]. The regression techniques include

linear regression, ridge regression, Gaussian regression etc.

More recently, a variety of CNN-based methods for crowd

counting have achieved significant improvement and outper-

formed traditional methods with handcrafted features due

to the powerful feature characterization of CNN. Zhang et

al. [15] trained a CNN to regress the crowd density map, and

fine-tuned the trained network to adapt to a new scene by

retrieving image samples that were similar to the new scene.

But this method requires perspective maps to solve the large

scale and perspective variations in a crowd scene, which lim-

its many practical applications. Zhang et al. [1] proposed a

multi-column network (MCNN) to extract features for crowd

counting without perspective maps. The network of differ-

ent columns corresponding to different filter sizes (large,

medium, small) ensured the robustness to large variation in

object scales. Instead of training a multi-column network on

all the input images, Sam et al. [2] proposed an extra switch-

ing CNN that was trained to select an independent CNN

regressor suited for a given input. The independent CNN re-

gressors were designed with different filter sizes for different

scales. Similarly, Onoro et al. [16] proposed a scale-aware

crowd counting network named Hydra CNN that learned a

multi-scale non-linear regression model by using a pyramid

of image patches extracted at multiple scales. In addition, Li

et al [17] utilized dilated kernels to deliver larger reception

fields for crowd counting tasks. Ranjan et al [18] tackled the

problem of crowd counting by combing low-resolution CNN

branch and high-resolution CNN branch respectively.

3. CASCADED RESIDUAL DENSITY NETWORK

The Cascade Residual Density Network consists of pyrami-

dal feature extraction and Cascade density map estimation,

named PNet and CNet respectively as shown in Fig. 1. The

PNet extracts pyramids of multi-scale features from the dif-

ferent layers of the backbone network to represent the scale

diversity of features. And the CNet consists of cascaded resid-

ual density modules that learn coarse-to-fine density map for

crowd counting.



3.1. Pyramidal Feature Extraction

As shown in Fig. 1, PNet is a feature extractor, which utilizes

the CSRnet [17] based on VGG16 [19] as the backbone. We

extract the multi-scale pyramidal features Fk from the mid

layers of PNet (conv1 2, conv2 2, conv3 3, conv5 6), where

k denotes the level of pyramid. In this paper, we construct a

four-layer feature pyramid to adapt to the scale variances in

crowd scenes. The resolutions of pyramidal features reduce

by a factor s from top (k = 1) to bottom (k = 4) due to the

operations of pooling and stride convolutions.

3.2. Cascaded Density Map Estimation

CNet is composed of multiple residual density modules as

shown in Fig. 1. At each pyramid level of PNet, the residual

density map is estimated by the corresponding residual den-

sity module, and the cascaded structure further improves the

quality of density map from low-resolution to high-resolution.
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Fig. 2. The residual density module Gk

As shown in Fig. 2, at the k-th level of pyramid, the resid-

ual density moduleGk transforms the upsampled density map

D′

k from the previous level Dk−1 and the k-th level pyramidal

features Fk to the residual density map Rk. D0 represents the

crowd density map initialized to zero. The calculation process

is as follows:

Rk = Ck(f(us(Dk−1), Fk)) (1)

where us(·) denotes the function of upsampling by a factor

s using bilinear interpolation. f(·) represents that features

are concatenated in the channel dimension. Ck denotes the

convolution operation with the filter of size 1× 1.

Then, the density map Dk at the k-th pyramid level can

be represented as:

Dk = us(Dk−1) +Rk (2)

The estimated Dk is similarly passed on to the next higher

resolution level until we generate the final density map D1

with the same size as the input image. In summary, the final

estimated density map D1 is ceaselessly refined by adding

residual density maps of various scales in the cascaded net-

work, which enhances the quality of crowd density maps.

3.3. Crowd Counting Loss

Euclidean Loss. The pixel-wise Euclidean loss is used to

measure the distance between the estimated density map and

the ground truth in most works for crowd counting. The Eu-

clidean loss function LE(Θ) is defined as follows:

LE(Θ) =
1

M

M
∑

j=1

‖DQ(mj ; Θ)−Qj‖
2

(3)

where Θ is the set of parameters of the CRDNet model. M

denotes the number of training patch images. mj is the input

image of the network. DQ denotes the estimated density map,

and Qj is the corresponding ground truth density map.
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Fig. 3. The estimated density map DQ (a) and the ground

truth Q (b)

Local Count Loss. The proposed local count loss is used

to calculate the difference of crowd counting between the es-

timated density map and the ground truth in local areas of the

input image. The loss measures the number of people in the

local crowd rather than a single pixel, which can optimize the

network and pay more attention to the details of local areas

on the basis of Euclidean loss. Then it can be more beneficial

to the overall crowd counting. The local count loss (LY (Θ)
is defined as follows:

cj(xi|Θ) =
∑

σ∈[0,h]×[0,h]

dj(xi + σ; Θ)− qj(xi + σ) (4)

LY (Θ) =
1

M

M
∑

j=1

∑

i∈[0,H]×[0,W ],stride=t

|cj(xi|Θ)| (5)

where d and q denote the local patch of estimated density map

DQ and the ground truth Q respectively as shown in Fig. 3.

For each square patch of size h whose upper left coordinate

at xi, we calculate the absolute count error |cj(xi|Θ)| for the

j-th training image with no padding. t represents the stride of

the patch. And the total local count loss LY (Θ) is the sum of

all patch losses.

Total Loss. We combine the Euclidean loss and the local

count loss as the final crowd counting loss in this paper, and

it is defined as follows:

L(Θ) = LE(Θ) + λLY (Θ) (6)

where λ denotes the weight of LY (Θ). In our experiments,

we empirically set λ as 0.0001.



4. EXPERIMENTS

In the training stage, firstly we train each residual density

module Gk independently to estimate the corresponding

crowd density map at the k-th layer of the pyramid. The

target residual density map R̃k is the difference target density

map Hk and the estimated density map in the previous layer.

R̃k = Hk − us(Dk−1). Finally, we fine-tune the whole

network in the public datasets.

We evaluate the crowd counting methods with the abso-

lute error (MAE) and mean square error (MSE), which are

defined as follows:

MAE =
1

N

N
∑

j=1

|nj − n̂j|,MSE =

√

√

√

√

1

N

N
∑

j=1

(nj − n̂j)
2

(7)

where N is the number of test images. For the j-th sample, nj

denotes the ground truth count and n̂j denotes the estimated

crowd count that is the integral of the estimated density map.

The proposed method is tested on two public datasets in-

cluding ShanghaiTech dataset and UCF CC 50 dataset. The

results show the effectiveness and the superiority compared

with the state-of-the-art methods.

4.1. ShanghaiTech Dataset

The ShanghaiTech dataset [1] is divided into two parts:

Part A and Part B. In the Part A sub-dataset, there are 482

images crawled from the internet, and in the Part B sub-

dataset, there are 716 images collected from the busy street.

We compare our method with the existing state-of-the-art

methods using MAE and MSE metrics. In Table 1, it can be

observed that the proposed CRDNet can achieve superior per-

formance compared with those networks with multiple filter

size [1, 2, 4], which demonstrates that the pyramidal features

have strong semantics at all scales.

Table 1. Comparison of CRDNet with other state-of-the-art

methods on the ShanghaiTech dataset.

Method
Part A Part B

MAE MSE MAE MSE

Zhang et al. [15] 181.8 277.7 32.0 49.8

MCNN [1] 110.2 173.2 26.4 41.3

Switch-CNN [2] 90.4 135.0 21.6 33.4

CP-CNN [3] 73.6 106.4 20.1 30.1

MSCNN [4] 83.8 127.4 26.4 41.3

CSRNet [17] 68.2 115.0 10.6 16.0

ic-CNN [18] 68.5 116.2 10.7 16.0

ACSCP [20] 75.7 102.7 17.2 27.4

CRDNet (proposed) 68.5 108.4 8.5 13.6

4.2. UCF CC 50 Dataset

The UCF CC 50 dataset [21] consists of 50 images collected

from the publicly available web. We perform 5-fold cross-

validation to evaluate the effectiveness of our proposed CRD-

Net method. As shown in Table 2, in the high-density crowd

scenes, the proposed CRDNet generates high-quality density

maps by the cascaded network, which makes great progress

compared with the state-of-the-art methods in the MAE met-

ric. In the MSE metric, it can also obtain a state-of-the-art

score.

Table 2. Comparison of CRDNet with other state-of-the-art

methods on the UCF CC 50 dataset.

Method MAE MSE

Zhang et al. [15] 467.0 498.5

MCNN [1] 377.6 509.1

Switch-CNN [2] 318.1 439.2

CP-CNN [3] 295.8 320.9

MSCNN [4] 363.7 468.4

CSRNet [17] 266.1 397.5

ic-CNN [18] 260.9 365.5

ACSCP [20] 291.0 404.6

CRDNet (proposed) 250.7 346.6

4.3. Loss Function

To evaluate the effectiveness of the local count loss, we com-

pare the performance of different loss functions on public

datasets as shown in Table 3. The results demonstrate that

LY (Θ) can increase the accuracy of crowd counting.

Table 3. Comparisons of errors with different losses on the

public benchmark datasets.

Loss Function
Part A Part B UCF CC 50

MAE MSE MAE MSE MAE MSE

LE 70.3 110.2 8.5 13.7 255.6 363.1
LE , LY 68.5 108.4 8.5 13.6 250.7 346.6

5. CONCLUSION

In this paper, the proposed Cascaded Residual Density Net-

work takes advantage of the feature pyramid structure to ex-

tract multi-layer feature maps at various scales and refines the

density map by cascaded coarse-to-fine architecture. To bet-

ter improve the accuracy of crowd counting, an additional lo-

cal crowd loss is proposed to regularize the estimated density

map. Extensive experiments performed on the ShanghaiTech

and UCF CC 50 datasets demonstrate the effectiveness com-

pared with recent state-of-the-art methods.
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wards perspective-free object counting with deep learn-

ing,” in European Conference on Computer Vision.

Springer, 2016, pp. 615–629.

[17] Yuhong Li, Xiaofan Zhang, and Deming Chen, “Csr-

net: Dilated convolutional neural networks for under-

standing the highly congested scenes,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1091–1100.

[18] Viresh Ranjan, Hieu Le, and Minh Hoai, “Iterative

crowd counting,” in European Conference on Computer

Vision. Springer, 2018, pp. 278–293.

[19] K. Simonyan and A. Zisserman, “Very deep convo-

lutional networks for large-scale image recognition,”

CoRR, vol. abs/1409.1556, 2014.

[20] Zan Shen, Yi Xu, Bingbing Ni, Minsi Wang, Jianguo

Hu, and Xiaokang Yang, “Crowd counting via adversar-

ial cross-scale consistency pursuit,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 5245–5254.

[21] Haroon Idrees, Imran Saleemi, Cody Seibert, and

Mubarak Shah, “Multi-source multi-scale counting in

extremely dense crowd images,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 2013, pp. 2547–2554.


	1  Introduction
	2  Related works
	3  Cascaded Residual Density Network
	3.1  Pyramidal Feature Extraction
	3.2  Cascaded Density Map Estimation
	3.3  Crowd Counting Loss

	4  Experiments
	4.1  ShanghaiTech Dataset
	4.2  UCF_CC_50 Dataset
	4.3  Loss Function

	5  conclusion
	6  References

