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DEFORMABLE MESH EVOLVED BY SIMILARITY OF IMAGE PATCHES
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Technical University of Denmark
Department of Applied Mathematics and Computer Science

Kogens Lyngby 2800, Denmark

ABSTRACT

We propose a deformable model for manually initialized seg-
mentation of images, which may contain both textured and
non-textured regions. Image segments and segment bound-
aries are represented using a deformable triangle mesh, pro-
viding all advantages of an explicit geometry representation,
but allowing for adaptive topology. Deformation forces are
computed using a probabilistic model of local self-similarity,
based on clustering of image patches. Both our curve rep-
resentation and our similarity model naturally support multi-
label segmentation. We demonstrate the properties of our ap-
proach on a number of natural color images as well as com-
posed textured images.

Index Terms— textured segmentation, adaptive triangle
mesh, Mumford-Shah

1. INTRODUCTION

A deformable contour is a curve in the image domain which
evolves under the influence of forces inferred from the im-
age and from the curve itself. The approach is very popu-
lar in image segmentation, since tracking segment boundaries
opens the possibility for regularization and for incorporation
of shape priors. Proposed methods vary largely in two char-
acteristics: the representation of the deformable curve and the
derivation of the forces deforming the curve.

In general, the curve representation falls in two groups,
each with its advantages. An explicit curve (e.g. snakes [1])
can be as simple as a sequence of points connected by line
segments. Such a representation is straightforward, uses any
desired resolution of points, and a curve deforms easy by dis-
placing points. An implicit curve (largely based on level sets,
e.g. [2]) defines an auxiliary function on the whole image do-
main, and the curve is located where the function changes
sign. The most important advantage of an implicit curve is
topological adaptivity.

Forces for deforming the curve are numerous. Local
methods [1, 3] attract curves to edges or other features char-
acterizing segment boundaries. More global (region-based)
forces [4, 2] utilize characterization of segment regions pro-
viding a higher robustness to the method.

Our approach offers advances in both curve representa-
tion and in deforming forces. The mesh-based curve repre-
sentation which we use is explicit, but it provides topologi-
cal adaptivity. Further advantages of this representation are
natural multi-label support, adaptive curve resolution and full
control of topological changes.

Our curve deforming forces are region-based and bear re-
semblance to active contours without edges. However, instead
of averaging over pixel intensities we perform averaging over
image patches, consequently encoding local self-similarity.
The resulting forces are therefore able to segment any type
of regions, characterized by both texture and intensity.

1.1. Related work

The most important limitation of the explicit curve represen-
tation originally proposed in [1] is the lack of topological
adaptivity. Providing an explicit curve with topological adap-
tivity requires resolving curve intersections, examples include
both 2D [5] and 3D [6] representations. This may be greatly
simplified by using a deformable triangle mesh [7]. Each tri-
angle in such mesh is given a label that indicates to which
segment it belongs. The curve (segment boundary) consists
of the edges shared by triangles that have different labels.

Applications of deformable meshes in volume and image
segmentation include [8] and [9], both with meshes of uni-
form resolution. The resolution adaptivity is introduced in
[10, 11] for segmentation of intensity-based regions. In this
paper we extend upon [10] by incorporating forces based on
self-similarity, allowing us to segment textured regions.

The typical approach to texture segmentation involves
mapping the image to a texture descriptor space. Here the as-
sumption is that descriptors within textures are similar while
they differ between textures. Such an approach was suggested
by [2] using texture orientation, which has been extended in
e.g. [12] using the structure tensor and level sets. For better
performance, the scale of the structure tensor is automatically
estimated in [13], while [14] utilizes diffusion.

Many other texture descriptors characterizing the local
image structure have been suggested. These include local
fractal features [15], gradient histograms [16], local binary
patterns [17], textons [18], and more. Images often contain



texture on various scales, or areas with deformed or rotated
versions of a certain texture. Typically, this is handled in by
designing descriptors invariant to such properties.

A related approach for image segmentation is based on
sparse dictionaries of image patches [19, 20] where a ded-
icated dictionary is built for each texture class. Similar
methods focusing on optimal reconstruction have been pro-
posed [21], and improved performance has been obtained
by also optimizing for discrimination [22]. More recently
[23] suggested to use sparse dictionaries together with an
user-initiated active contour.

Our approach is closely related to the methods in [24]
and [25]. These employ a dictionary that encodes patch-
based self-similarities in the image for evolving a deformable
boundary. In [24] a snake curve of is used. Consequently,
only a single closed curve of a constant resolution may be
tracked. These issues are alleviated in [25], where a level
set is employed. However, multi-phase forces used there
are based on heuristics, while implicit curve representation
lacks the compactness and gives only limited possibilities for
incorporating shape priors.

2. METHOD

Our aim is to obtain a segmentation where similar patterns in
the image belong to the same segment. We utilize a triangle
mesh to define a piece-wise constant function, which repre-
sents segments of an image (Fig. 1). Each triangle is labeled
with an integer l = 1, ..,K indicating the segment it belongs
to. The number of segments K is fixed.

(a) (b) (c)

Fig. 1: A mesh representing moving segments. Edges consti-
tuting the boundary are shown in red

Alg. 1 describes the general algorithm. The segmenta-
tion starts with an initialization and then deforms the mesh
under forces derived by a model for encoding self-similarity
in the image. A related model has been used for evolving
active contours [24, 25]. In this work we provide a more ef-
ficient clustering algorithm, efficient probability update, and
the derivation of forces on explicit curve.

To handle the moving mesh, we utilize the deformable
simplical complex (DSC) framework [7], which provides an
explicit curve with the topological adaptivity. Fig. 1 illus-
trates the DSC algorithm, where the boundary moves itera-
tively. In each iteration, the segments move as far as possible
without making inverted triangles (Fig. 1b), and the conflic-

tion are resolved by mesh refinement (Fig. 1c). The DSC may
requires several iterations to move the boundary to its desti-
nation (Fig. 1a).

Algorithm 1: General algorithm
Input: Label initialization

1 while Residual error is large do
2 Update pixel probability /* Section 2.1 */

3 Compute curve force /* Section 2.2 */

4 Deform mesh /* Using the DSC */

2.1. Self-similarity model

2.1.1. Patch-based texture probability

We use dictionary of image patches to compute pixelwise
probabilities of pixel belonging to the segment Pi : Ω →
R, i = 1, . . . ,K, where Ω is the image domain, and K is the
number of segments.

During initialization, we encode self-similarity in the im-
age by extracting patches of sizeM×M from the image, and
then grouping similar image patches using clustering. The
idea is that the patches that group together should belong to
the same segment, while each segment can contain many dif-
ferent clusters. Since patches are overlapping, every pixel is
influenced by multiple clusters. Likewise, every cluster is in-
fluenced by all its patches. The detailed description of this
approach can be found in [25].

For curve evolution, the computation of probabilities is
based on two steps. Since we know the current labeling of all
patches in the image, in the first step we compute the pixel-
wise label probability for each cluster from the occurrence of
a given label in each pixel in the cluster. In the second step
we use the label probabilities in the cluster and go back to
the image and compute the label probabilities in the image by
averaging overlapping image patches.

While our approach is similar to [25], we improve upon
[25] by utilizing a variant of k-means trees for clustering,
which results in a more efficient implementation of the al-
gorithm.

2.1.2. Improved clustering the image patches

Intensity-based clustering can result in that image patches are
not grouped together even though they contain similar pat-
terns. In order to increase the accuracy, in our experience, it
is more important to have very large number of clusters than
the precision in clustering; therefore, we have chosen to use
a k-means tree [26]. A k-means tree is a graph build from
consecutive k-means clusterings resulting in a directed rooted
tree with a fixed branching factor b and number of layers t.

In order to limit the computational burden and memory
usage when building the k-means tree we extract a subset of



patches of size M ×M from the image and collect pixel in-
tensities in vectors of length ρ = M2l (l is the number of
channels in the image, e.g. l = 1 for grayscale images and
l = 3 for RGB images). These are clustered into b clusters
and each cluster center makes up a node in the tree. Repeated
k-means clustering for all image vectors belonging to a node
results in b new child nodes. This continues for all nodes until
the desired number of layers, t, is reached. If a node contains
less image vectors than the branching factor b, then no further
clustering is carried out and child nodes are marked as empty.
In total n tree nodes indexed by k ∈ {1, . . . n} are obtained.

Each k-means clustering is initialized by choosing a ran-
dom subset of b image vectors and clustering is obtained by
iteratively updating these centers. Our experience is that good
performance is obtained without running the k-means until
convergence, and therefore a fixed number of iterations is
chosen, e.g. 10 iterations.

The outcome of the clustering is an assignment image,
which for every pixel indicates to which cluster the patch cen-
tered around the pixel belongs to.

2.2. Deformable adaptive mesh for image segmentation

Our deformation model is largely influenced by approaches
in [10, 11], which use intensity to derive the displacements of
the mesh. Here we use probability maps Pi : Ω → R, i =
1, . . . ,K of pixel belonging to a segment computed from the
current segmentation.

Our objective is to find a segmentation ∪Ωi = Ω that
minimizes the energy function

E(∪Ωi) =

N∑
i=1

∫
Ωi

(1− Pi)
2dΩ + αLengthΓ (1)

where Ω is the image domain, and Γ represents boundaries of
the segments. This energy function is closely related to the
popular Mumford-Shah functional [27].

2.2.1. Evolving the segmentation boundary

Minimizing E leads to iterative displacements of boundary
vertices ∂vi

∂t = Fext(vi) + Fint(vi), where we derive the
internal force model

Fint(vi) =
∑

vj∈Ni

vj − vi

‖vj − vi‖
, (2)

where Ni denotes neighbor vertices of vi.
The external force of vertex vi is

Fext =
∑
e∈Ni

{
ne

∑
vj∈e

∥∥vj − vi

∥∥ (2− P1 − P2)(P1 − P2)
}

(3)
Here e denotes a boundary edge, ne is the edge normal, and
P1,P2 are the probabilities of point vj belongs to the two

Fig. 2: Multi-label segmentation of a synthetic image

Fig. 3: Adaptive mesh overlaying segmentations

segments separated by e. The reader may refer to [10, 11] for
a similar implementation of the computation of the external
force.

2.2.2. Relabeling triangles

Triangle relabeling is a discrete event that assigns a triangle
to the label such that the energy in (1) is minimized. This step
allows region insertion and speeds up the convergence. Fol-
lowing [10], we perform triangle relabeling after every four
steps of mesh evolution for optimal performance.

2.2.3. Adapting the mesh resolution

A big advantage of our explicit scheme is that we can define
a number of discrete events for adapting the triangle sizes as
needed. We follow [10], which starts with a coarse mesh and
locally subdivides the triangle, where variance of the proba-
bility is high. This approach requires a threshold for triangle
variance, which may be difficult to set. The reader may refer
to [10] for meshing procedure.

3. RESULTS AND DISCUSSION

Multi-label support is our first advantage (Fig. 2). The
method can support unlimited number of labels, defined by
user. By using a single mesh, we have the boundary clearly
defined, while other methods, e.g. level set method, may have
problems with vacuum or overlap.

Adaptive mesh output is our second advantage. In Fig. 3b
we show segmentations obtained on natural images with the



Fig. 4: Segmentation comparison between different methods. There are two rows for each image, where the top row from left
shows our method without triangle relabelling, proposed method with triangle relabelling, and initialization (used for the four
images from the left), and original. Bottom row shows result by [24], result by [25], initialization and result by [23].

mesh overlayed. Adaptive mesh aids post-processing such as
simulations or quantitative analyses.

Fig. 4 shows a small comparison between the proposed
method, self-similarity with snakes [24], self-similarity with
level set [25], and sparse texture active contour [23]. Com-
pared with [24] and [25] our method can obtain similar re-
sults, but outcome of [24] and [25] is dictated by curve rep-
resentation, while we control the outcome by turning triangle
relabeling on or off. If disjoint objects are to be segmented,
like the image of zebras, it is advantageous to use triangle re-
labeling, because it allows the objects of the same type to be
segmented to have the same label. However, triangle relabel-
ing also gives more flexibility to the model, which in some
cases can be a disadvantage, as seen in the bottom image in
Fig. 4, where the grey bottom part of the images is labeled the
same as the kangaroo.

Compared with [23] is important to note a substantial
amount of information given by their initializations, whereas
the limited input in the models employing the patch-based
self-similarity model.

All segmentations based on self-similarity use patch size
of 5 × 5, and all methods used the same smoothing factor

α = 2. Run-times were approximately 20 seconds for the
proposed method, 40 seconds for [24] and 25 seconds for
[25]. Both [24] and [25] are implemented in Matlab using
mex-files implemented in C++ whereas the proposed method
is only C++.

4. REFERENCES

[1] Michael Kass, Andrew Witkin, and Demetri Terzopou-
los, “Snakes: Active contour models,” International
Journal of Computer Vision, 1988.

[2] Tony F. Chan and Luminita A. Vese, “Active contours
without edges,” IEEE Transactions on Image Process-
ing, 2001.

[3] Ravi Malladi, James A Sethian, and Baba C Vemuri,
“Shape modeling with front propagation: A level set ap-
proach,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 1995.

[4] Anthony Yezzi Jr, Andy Tsai, and Alan Willsky, “A
statistical approach to snakes for bimodal and trimodal



imagery,” in International Conference on Computer Vi-
sion. IEEE, 1999.

[5] T McInerney and D Terzopoulos, “T-snakes: topology
adaptive snakes.,” Medical image analysis, 2000.
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