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ABSTRACT
We address the problem of style transfer between two photos
and propose a new way to preserve photorealism. Using the
single pair of photos available as input, we train a pair of deep
convolution networks (convnets), each of which transfers the
style of one photo to the other. To enforce photorealism, we
introduce a content preserving mechanism by combining a
cycle-consistency loss with a self-consistency loss. Exper-
imental results show that this method does not suffer from
typical artifacts observed in methods working in the same set-
tings [1, 2]. We then further analyze some properties of these
trained convnets. First, we notice that they can be used to
stylize other unseen images with same known style. Second,
we show that retraining only a small subset of the network
parameters can be sufficient to adapt these convnets to new
styles.

Index Terms— style transfer, cycle-consistency loss,
self-consistency loss.

1. INTRODUCTION

Image style transfer has been investigated for many years [3,
4, 5]. In the case where one wants to make a photo look like a
painting, several innovative approaches using deep convnets
have been proposed recently [6, 7, 8, 9, 10, 11, 12]. How-
ever, these methods fail for style transfer between photos as
they generate strong artifacts and the results lack photoreal-
ism. This issue can be partly solved by applying a structure-
preserving filter / regularization [1, 2, 13] based on the “mat-
ting Laplacian” [14]. But since this filter tries to generate an
eye-pleasing image from an intermediate result with heavy
distortions, it sometimes fails to recover all the structures vis-
ible in the input photo or to suppress stylization artifacts. In
this work, we propose an alternative method for photo style
transfer.

The recent work of Ulyanov et al. [15] shows that the sole
structure of a deep convnet is able to capture low-level image
statistics before any learning and, thus, can be used as an im-
age prior. Given a deteriorated image, they show that optimiz-
ing the parameters of a randomly-initialized convnet, using
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only this image for “training”, is sufficient to improve its qual-
ity. The authors demonstrate the efficiency of this technique
for, e.g., denoising, up-sampling and inpainting. Inspired by
this work, we propose to train two networks for photo styl-
ization using only the available pair of photos. All along
the training, the networks are forced to preserve the struc-
ture of the input photos via cycle- and self-consistency mech-
anisms [16]. This approach successfully prevents structure
distortions and generates satisfying photo stylization. This
constitutes our main contribution. We compare our results to
those obtained with state-of-the-art methods in Section 3. We
then explore some properties of the trained convnets. First,
even though these networks are trained using only a single
pair of photos, we show that each network can transfer the
learnt style to natural images not viewed at training time. The
results are comparable to those obtained by training two new
convnets using each new image and the original photo of the
style. We note however that the images to be stylized need
to have a similar semantic content to the original photo of the
style. Second, to apply a new style, we show that only a small
subset of the network parameters needs to be retrained (with
however a good choice of the image pair used to pre-train the
other parameters).

Related works. Optimization-based Neural Style Trans-
fer [6] has attracted a wide interest as this is the first method
to perform artistic style transfer using features extracted from
a deep convnet. This method being slow, follow-up works
[8, 7, 9, 10, 11, 12] proposed fast artistic stylization by train-
ing feed-forward networks to estimate the solution of [6] on
a large collection of images. An improvement of the neural
style transfer method was proposed by [1] to address photo
stylization, with faster methods detailed in [2, 13]. In this
work, we first concentrate on improving [1] with the construc-
tion of a new photo prior. This prior is constructed using two
deep convnets that are trained from a random initialization
using two images as inputs. Once trained each network can
be used to stylize rapidly new images towards the style of
one of the images used for training. Applying a new style
needs however a partial retraining. Another related image
transformation task is domain adaptation. Each style could
be considered as a domain and deep convnets can be trained
to transform images from a source domain to a target domain
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(a) Cycle-consistency (b) Self-consistency

Fig. 1: The network gθa(·) transfers the style of the image xa to
its input, while gθb(.) transfers the style of xb. Cycle-consistency
is the fact that gθb(gθa(xb)) ≈ xb and gθa(gθb(xa)) ≈ xa, while
self-consistency is the fact that gθb(xb) ≈ xb and gθa(xa) ≈ xa.

[17, 16, 18]. In this work, we use the cycle-consistency mech-
anism widely used for unpaired domain adaptation. Note
however that we do not use any adversarial loss and that a
domain/style in our case is not made of a collection but of a
single image.

2. PHOTO STYLE TRANSFER NETWORK

Our goal is to transfer the style of an image xa to another
image xb. We denote this stylized image by xb→a. Following
[1], xb→a is defined as a solution of

argmin
x
λc Lc(x,xb) + λs Ls(x,xa) + λL LL(x), (1)

where λc, λs, λL > 0. The content lossLc permits us to retain
the content of xb in xb→a, while the style loss Ls aims at
transferring the style of xa. The content loss is defined as the
Euclidean distance between VGG-19 features [19] of xb and
x. The style loss is defined as the Euclidean distance between
Gram matrices of VGG-19 features of xa and x. Finally, LL

is a regularization term favoring photorealism and built using
the matting Laplacian L [14]. Due to space constraint, we let
the reader refer to [1] for more details about these losses.

Although visually pleasing at the first glance, the photo
stylization results obtained with the use of the matting Lapla-
cian L present several undesirable artifacts (see Section 3). To
avoid these disadvantages, we exploit the fact that both xa and
xb are photorealistic to build a new content loss that preserves
photorealism as much as possible.

2.1. Content preserving mechanism

First, we remove the loss LL involving the matting Laplacian
in (1), or, equivalently, set λL = 0.

Second, taking inspiration from [15], we propose to use
the constraint x = gθa(xb) in (1), where gθa(·) is a deep
network with parameters θa that performs stylization toward
the style of xa. Therefore, instead of directly minimizing the
loss on x, the minimization is conducted over θa.

Third, we borrow from [16] the idea of cycle consistency
to construct a new content loss preserving input structures.
Let gθb(·) be a deep network with parameters θb that performs

Input Cycle-consistency Self-consistency Stylization

Fig. 2: Given a pair of input photos, the proposed cycle/self-
consistencies yield images that are almost identical to the inputs
while the stylization renders each photo in the style of the other.

stylization toward the style of xb. If we feed the stylized im-
age xb→a = gθa(xb) into gθb(·), we expect to recover the
original input image xb. Similarly, we expect gθa(gθb(xa)) =
xa (Fig. 1a). The first part of our new content loss reads

L̃1(θa, θb) = Lc(gθb(gθa(xb)),xb)
+Lc(gθa(gθb(xa)),xa), (2)

where we recall that Lc is a perceptual loss constructed using
VGG-19 features. As in the recent work on image inpainting
[20], we use layers conv1 1, conv2 1 and conv3 1 of
VGG-19.

Fourth, given the input image xa, the stylization net-
work gθa(·) should be able to preserve xa: xa = gθa(xa).
Similarly, xb = gθb(xb). We name this mechanism self-
consistency (Fig. 1b). This yields the second part of our new
content loss:

L̃2(θa, θb) = Lc(gθa(xa),xa) + Lc(gθb(xb),xb). (3)

We remarked that using the cycle-consistency loss exclu-
sively as content loss was not sufficient to preserve input
structures. Using jointly the cycle-consistency and self-
consistency losses improved the quality of our results. We
show in Fig. 2 that the cyle- and self-consistencies are well
respected by the pair of trained networks.

Finally, the stylization is controlled by the style loss Ls,
calculated for both styles:

L̃s(θa, θb) = Ls(gθa(xb),xa) + Ls(gθb(xa),xb), (4)

where we recall that Ls is defined by the distance between
Gram matrices of VGG-19 features. We use layers conv1 1,
conv2 1 and conv3 1.

In total, we replace (1) by minimizing w.r.t. networks’
parameters the complete loss:

L̃(θa, θb) = λc

[
L̃1(θa, θb) + L̃2(θa, θb)

]
+ λs L̃s(θa, θb). (5)

In [16], the cycle-consistency loss is used in combination
with an adversarial loss, which also contributes to the pho-
torealism of their result. In our case, no adversarial loss is
used. Let us also re-emphasize that, unlike in [16] and related
works, gθa(·) and gθb(·) are trained using only two images:



Fig. 3: Our networks consists of 16 convolution layers, of which 10
are in the residual blocks. Instance normalization is added after each
layer except the last one. The 2nd and 3rd layers have a stride of 2.
Two skip connections are added over the residual blocks.

xa and xb. Our method is also inspired by the work of [15],
where one network is trained using one image (and a fixed
random input) to perform, e.g., denoising, up-sampling and
inpainting. However, our trained networks can be applied to
images not viewed at training time while the network trained
in [15] remains specific to the image used for training.

2.2. Network architecture

We use a network architecture which has been proved effec-
tive by earlier works on artistic style transfer [7, 9] and do-
main adaptation [16]. The structure of the network is pre-
sented in Fig. 3. It is similar to that of [9] with two differ-
ences. First, inspired by U-net [21], we introduce skip con-
nections between the second and penultimate layers, as well
as between the third and ante-penultimate layers, with the aim
of better preserving the structure of the input image.

Second, we also reduce the kernel size in the residual
blocks [22] from 3× 3 to 1× 1 as, in our case, reducing the
number of parameters had no impact on the quality of gener-
ated results while accelerating the training.

2.3. Implementation details

As in [1, 2, 13], we match the style of similar semantic regions
(sky, building, lake, etc.) between two images by using se-
mantic segmentation masks. We allocate one stylization net-
work for each semantic region to prevent style mixing. Hence,
for a pair of photos each with n corresponding semantic re-
gions, we train 2n networks. Training is performed jointly for
up to 8 semantic regions.

The style given to an image in the networks g(·) can be
controlled by the instance normalization parameters as shown
in [9, 11]. In order to reduce the number of trainable parame-
ters, the two networks share the same convolutional layers but
have different instance normalization layers.

The full objective function (5) contains six sub-losses1,
each involving the VGG-19 network. To reduce memory foot-
print, we randomly draw one of the sub-losses at each itera-

1Two in (2), two in (3), two in (4).
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Fig. 4: Photo style transfer with the methods of [1], [2] and ours.

tion and apply a gradient step using this sub-loss only. The
sub-losses are drawn using a uniform distribution and with-
out replacement. This ensures that all the sub-losses are se-
lected once every six iterations. For a pair of photos of size
700 × 400, each with a single semantic region, the training
process takes about 15 minutes on a NVIDIA Tesla P100
GPU. Our method was implemented using PyTorch [23].

For a fair comparison with existing methods, we post-
process the obtained images using the same filter as in [1, 2,
13]. This post-processing permits ones to enhance fine details
and global photorealism.

3. RESULTS

3.1. Comparison with state-of-the-art methods

We compare our results with those of [1, 2] in Fig. 4. The
method of [1] has been described above. Li et al. [2] proposed
a closed-form solution to the photo style transfer problem by
using a feed-forward network for stylization followed by a
smoothing step that favors photorealism.

Qualitatively, the results of [1] seem satisfying at first
glance, but some of them present watercolor painting-like ar-
tifacts. The method [2] is fast and preserves well the content
structure. Nevertheless, the smoothing step tends to weaken
the stylization, with a lack of color saturation in the output
image compared to the style image, and sometimes yields an
undesired haze effect. In comparison, we find that our re-
sults respect better the original style while looking closer to
real photos. They do not suffer from watercolor painting-like
or hazy artifacts. However, we remarked that our approach
sometimes generates inconsistent stylizations at the bound-



(a) Pre-training (b) Input (c) Reapplied (d) Optimized

Fig. 5: Style transfer networks pre-trained on (a) have been reapplied
on (b), getting stylized images (c). (d) are outputs generated by our
basic approach using (b) and the small top image of (a) as reference
image.

aries of different semantic regions. We also noticed that it has
difficulties transferring city landscape images from night to
day. We show such a failure case in the last row of Fig. 4.
Note that the results obtained by [1] or [2] are also not en-
tirely satisfying for this example. Finally, we remarked that
the method of [2] has more difficulties to transfer the color
saturation of the style image than the method of [1] or ours.
A measure of the distance between the histograms (computed
in the channel S of the HSV color model) of the style images
and stylized images shows that, on average, [1] preserves the
best color saturation followed by our method.

3.2. Generalization to unseen images

Even though trained on merely two images, our network can
stylize images not viewed at training time. As an example,
we first train style transfer networks on the pair of images
in Fig. 5a. We then use these trained networks to transfer
the styles of the small top images in Fig. 5a to the images in
Fig. 5b. We obtained the stylized images in Fig. 5c, which
preserve well the original structures while incorporating the
target styles. For comparison, we show the results obtained
with our original approach in Fig. 5d, i.e., obtained after train-
ing new convnets for each image in Fig. 5b. The results are
globally comparable to the results obtained using the pre-
trained convnets. We nevertheless remarked that to get a rea-
sonable stylization one should use images of similar semantic
content as the one used to pre-train the style transfer networks.
When there is a semantic difference, our approach still trans-
fers the styles but may generate unrealistic results, such as
blue house or red river. For the domelike artifact in Fig. 5d,
there exist nearly invisible color differences in the dark area,
so the network fails to transform all the area into blue.

3.3. Retraining for new styles

We mentioned in Section 2.3 that our stylization networks
share the same convolutional layers but have different in-

(a) Input (b) Full Training (c) Partial Training (d) Partial Training (e) Partial Training

Fig. 6: Style networks are pre-trained for each image pair in the first
row. Fixing the convolutional layers of these pre-trained models, we
retrain the normalization parameters to transfer the styles between
the photos in (a). The results are the two bottom rows of (c) to (e)
for each pre-trained model. The results generated by randomly ini-
tialized and fully trained networks are presented in (b).

stance normalization parameters, which control the styles.
This design is due to Dumoulin et al. [9]. We show below
that it is sufficient to retrain the instance normalization pa-
rameters to adapt our networks to a new style, even though
the convolutional layers are pre-trained using a single pair
of images. Given the extreme scarcity of training data, this
property was not guaranteed, as the role of the convolutional
filters and normalization parameters could have not been
completely disentangled, letting the former still control part
of the stylization.

We trained a pair of networks on a first pair of images.
We fix the convolutional layers and retrain both networks us-
ing another pair of images by optimizing only on the instance
normalization parameters. Fig. 6c-e present results obtained
with this approach. The results are qualitatively comparable
to those generated by randomly initialized and fully trained
networks. Let us highlight nevertheless that this adaptation of
the instance normalization parameters works better when the
networks are pre-trained on two images of completely differ-
ent styles (colorwise).

4. CONCLUSION

We designed a new method for effective photo stylization be-
tween two images that consists in training a pair of deep con-
vnets with cycle- and self-consistency losses. Despite high-
quality results on several examples, there is still room for
improvement of our results. In particular, we should try to
reduce the artifacts at the boundary of different semantic re-
gions and reduce the overexposure that sometimes appears in
small regions of the results. A direct extension of this work
could be to train another network to predict the style parame-
ters in gθ(·) directly from an image, while using the proposed
loss, to be able to use arbitrary style at runtime.
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