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ABSTRACT

Convolutional neural network (CNN) delivers impressive
achievements in computer vision and machine learning field.
However, CNN incurs high computational complexity, espe-
cially for vision quality applications because of large image
resolution. In this paper, we propose an iterative architecture-
aware pruning algorithm with adaptive magnitude threshold
while cooperating with quality-metric measurement simulta-
neously. We show the performance improvement applied on
vision quality applications and provide comprehensive anal-
ysis with flexible pruning configuration. With the proposed
method, the Multiply-Accumulate (MAC) of state-of-the-art
low-light imaging (SID) and super-resolution (EDSR) are
reduced by 58% and 37% without quality drop, respectively.
The memory bandwidth (BW) requirements of convolutional
layer can be also reduced by 20% to 40%.

Index Terms— Pruning, Vision Quality, Network Archi-
tecture

1. INTRODUCTION

CNN is adopted as an essential ingredients in computer vision
and machine learning areas [1, 2, 3]. Vision perception tasks
including image classification, object detection and seman-
tic segmentation are comprehensively investigated and asso-
ciated with CNN. Even in image processing field such as su-
per resolution, high dynamic range imaging and de-noising,
CNN has progressive and promising improvement on image
quality in recent years [4, 5].

However, compared to perception tasks, it requires higher
computational complexity and BW requirements for vision
quality tasks. MobileNetV1 [6] is designed with 569M MAC
for ImageNet classification. On the other hand, in low-light
photography SID [4] and super-resolution EDSR [5], it takes
560G MAC and 1.4T MAC per inference, respectively. It is
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more challenge to deploy CNN models on mobile devices for
vision quality applications.

Network pruning [7] is an effective methodology toward
performance optimization. Sparsity is defined as the ratio of
the number of zero weights divided by the number of total
weights. Better pruning algorithm delivers higher sparsity
and reduces more MAC and BW correspondingly. However,
quality drop is one of the major challenges in network prun-
ing. Fig. 1 shows visible defect on SID even with only 0.1
PSNR degradation.

In this paper, we propose architecture-aware pruning to
maximize sparsity and MAC reduction without quality-metric
(PSNR or SSIM) drops. We also analyze the effects of MAC
and BW reduction with different configurations associating
with pruned structures. The proposed method focus on algo-
rithms including but not limited to SID and EDSR.

2. RELATED WORKS

Network pruning has been widely explored in existing litera-
tures. To answer which weight should be pruned, some works
add evaluation functions to loss function, such as group lasso
[8] and MAC regularization [9]. However, it is difficult to
find a proper ratio between additional pruning-related loss
and original loss. Others works create evaluation functions,
including sensitivity [10, 11] and weight magnitude [12].
The sensitivity method computes the impact of weights on
the training loss and removes low-impact weights. Weight
magnitude method simply prune weight if its absolute value
is less than the threshold, which is easier to be applied on
large-scale CNNs. In this work, we use weight magnitude
method to prune the network.

Pruning granularity. There are two granularity of prun-
ing, fine-grained pruning [12, 13] and coarse-grained pruning
[14, 15, 16, 17]. Fined-grained method prunes individual
weights (i.e., within a filter kernel), whereas coarse-grained
method extensively considers network structures (i.e., along
the output and the input channels). According to [18], fine-
grained pruning needs additional dedicated hardware to han-
dle irregular sparsity. Coarse-grained method may obtain
higher compression ratio without the need of compression
header [19]. Therefore, we focus on coarse-grained output-
channel-wise pruning.
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Fig. 1. Slightly quality-metric drop (PSNR -0.09) may incur
visible defects (SID). (a) PSNR: 25.41. (b) PSNR: 25.32.

Iterative pruning. To prevent catastrophic accuracy degrada-
tion, iterative pruning is viewed as an effective retraining pro-
cedure [20, 21, 22]. For vision quality applications, quality
metrics are required as a reference judgement for termination
of pruning procedure.

3. PROPOSED METHOD

3.1. Architecture-aware Pruning

An output channel is pruned if its maximum absolute weight
value is less than magnitude threshold. For convolutional
layer, the weight kernel has tensor shape i× o× k× k, where
i is the number of input channels, o is the number of output
channels and k is kernel size. Output-channel-wise pruning
removes the weights along output channels. The kernel shape
becomes i× (o−o′)×k×k if o′ output channels are pruned.
The output-channel pruned ratio is defined as o′/o.

Once output channels of a layer are pruned, the corre-
sponding input channels of the following layer are also re-
moved. We defined one layer’s sparsity as 1 − ((i − i′)(o −
o′))/(i × o), where i′ is the number of pruned input channel
in the layer. The network sparsity is defined as the ratio of the
number of zero weights of a pruned network divided by the
number of total weights of the original network.

3.1.1. Keep Layer Depth

Usually, in vision quality applications, each layer in network
is semantically designed for quality-sensitive primitives, such
as edge and chroma, with respect to different resolutions. In-
tensively removing a layer can severely degrade the quality.
Therefore, we keep the network architecture by preserving
minimum number of output channels.

3.1.2. Enhance MAC Efficiency

A pruned network with higher weight sparsity may not im-
ply higher computation reduction. We define MAC/weight,
Rl (Eq. 1), for each layer as an indicator of MAC efficiency.
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Fig. 2. MAC/weight are much larger on top and bottom layers
in SID. However, MAC/weight for most layers are uniform in
EDSR.
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Fig. 3. An example of residual block. There are 4 layers
with 6 output channels in each layer. Color parts represent
removed output channels. One color denotes one group of
channels in balance pruned output channel method.

Ml and Wl is number of MAC and weights of a layer, respec-
tively. Fig. 2 shows that MAC/weight are much larger on
both top and bottom layers on SID because of its U-Net [23]
network topology. Therefore, to productively reduce compu-
tation, output channels of a layer with higher Rl are tend to
be pruned more because of higher magnitude threshold.

Rl = log10(Ml/Wl) (1)

3.1.3. Balance Pruned Output Channel

Residual block is universally used in network topology de-
sign such as in EDSR which is a variation of ResNet [24] with
long shortcut. However, to prune output channels from resid-
ual block is arduous because of element-wise operations (i.e.,
element-wise ADD) or concatenation. Fig. 3 illustrates an ex-
ample that a magnitude threshold is applied to 4-layer resid-
ual block. Because of element-wise ADD after layer Conv-B
and layer Conv-D, the output channel of a given layer (Conv-
D) and its preceding layer (Conv-B) with the same index (5)
should be grouped and pruned at the same time. Conv-B layer



Algorithm 1 Architecture-aware and Quality Metric Guaran-
teed Pruning

1: Input: Target quality Q, Target Sparsity Increment Si,
Threshold Increment Ti, Total Step G

2: Target Sparsity S = Si+ total-network-sparsity
3: Initial Threshold Base Tb = Ti
4: repeat
5: for layer in network do
6: Sl = pruned-output-channel-ratio(layer)
7: Ml = MAC(layer)
8: Wl = weight-size(layer)
9: Rl = log10(Ml/Wl)

10: Tl = Tb × (1− Sl)×Rl

11: prune-output-channels-by-threshold Tl
12: end for
13: Sc = calculate-total-network-sparsity
14: Tb = Tb + Ti
15: until Sc > S
16: repeat
17: retrain-pruned-network
18: Qt = evaluate-quality-metric
19: g = get-current-step
20: until (Qt > Q or g >= G)
21: if g < G then
22: jump to line 2
23: end if

and Conv-D layer have less pruned output channels compared
to layer Conv-A and layer Conv-C.

We propose a guidance (Eq. 2) to prune output channels
of residual block easier by increasing magnitude threshold on
layers with lower ratio of pruned output channels. MAC effi-
ciency mentioned in Sec. 3.1.2 is also applied. Sl is the ratio
of pruned output channels of layer l. Tb is the original mag-
nitude threshold base. Thus, output channels of a layer with
lower Sl have higher tendency to be pruned.

Tl = Tb × (1− Sl)×Rl (2)

3.2. Quality Metric Guarantee

To maintain quality metric (PSNR and SSIM) while maximiz-
ing pruned MAC, our algorithm prunes and retrains network
iteratively. The iteration terminates when either the target
quality-metric criteria or maximum training steps is reached.
The proposed overall flow is shown in Algorithm 1.

4. EXPERIMENTAL RESULT

4.1. Experiment Setup

We generally investigate both SID for low-light photography
and EDSR (baseline network, ×2) for super resolution. SID
uses its own dataset [4] and EDSR adopts DIV2K dataset

(a) (b)

(c) (d)

Fig. 4. SID results of our method compared to original (with-
out pruning). (a)(c) Original (PSNR: 28.54, SSIM: 0.767).
(b)(d) Pruned with Method-D (PSNR: 28.55, SSIM:0.768)

(a)

(b)

(c)

Fig. 5. EDSR results of our method compared to original
(without pruning). (a) Image sampled from DIV2K. (b) Orig-
inal (PSNR: 34.42, SSIM: 0.942). (c) Proposed Method-D
(PSNR: 34.42, SSIM: 0.942)

[25]. The input size of the network is set to the maximum
image resolution in the datasets, 1424×2128 for SID and
1020×1020 for DIV2K, to calculate MAC and BW.

In SID dataset, we use images captured by Sony α7SII
camera as our training and validation data, which contains
280 pairs and 93 pairs, respectively. The pre-process stage
is aligned with the setting in SID paper. In DIV2K dataset,
we use the pre-process setting mentioned in [5] to generate
5,458,040 training patches from 800 training images and use
100 validation images as our validation data.

4.2. Result

The comprehensive analysis is elaborated in Table 1. We
evaluate four distinct approaches. Method-A stands for
magnitude threshold pruning without any structural hints.



Table 1. Detailed results. BW, considering only convolutional layers, consists of both weights and activations. Each weight
and activation is represented with 4-byte floating-point numerical precision.

Network Solution # of MAC
(×109)

# of Weights
(×103)

# of Activations
(×106)

BW
(MByte/Inference)

Validation
PSNR

Validation
SSIM

SID Original 560 (100%) 7757 (100%) 1915 (100%) 1922 (100%) 28.54 0.767
SID Method-A 458 (82%) 6918 (89%) 1632 (85%) 1639 (85%) 28.54 0.768
SID Method-B 354 (63%) 5275 (68%) 1485 (78%) 1491 (78%) 28.54 0.771
SID Method-C 270 (48%) 5584 (72%) 1219 (64%) 1225 (64%) 28.54 0.769
SID Method-D 236 (42%) 4241 (55%) 1169 (61%) 1173 (61%) 28.55 0.768

EDSR Original 1428 (100%) 1367 (100%) 5076 (100%) 5077 (100%) 34.42 0.942
EDSR Method-A 1085 (76%) 1037 (76%) 4481 (88%) 4481 (88%) 34.43 0.942
EDSR Method-B 1085 (76%) 1037 (76%) 4481 (88%) 4481 (88%) 34.43 0.942
EDSR Method-C 1085 (76%) 1037 (76%) 4481 (88%) 4481 (88%) 34.43 0.942
EDSR Method-D 897 (63%) 857 (63%) 4083 (80%) 4083 (80%) 34.42 0.942
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Fig. 6. Pruned output channel per layer on SID

Method-B keeps the depth of network (Sec. 3.1.1). Method-C
further considers MAC/weight ratio (Sec. 3.1.2) on the basis
of Method-B. Method-D integrates all proposed techniques.
All methods are conducted in company with quality-metric
constraints (Sec. 3.2). For both SID and EDSR, it shows no
PSNR and SSIM drop on all methods. Fig. 4 and Fig. 5
reveal the indistinguishable quality difference.

Keep Layer Depth. In SID, Method-B reduces MAC from
82% to 63% compared to Method-A. As shown in Fig. 6,
Method-A may remove all the output channels of a layer
due to not keeping layer depth, which leads to severe quality
metric drops that cannot be recovered in retraining steps.

Enhance MAC Efficiency. In SID, Fig. 6 shows that
Method-C prunes more weights on both top and bottom layers
that have larger MAC/weight (Eq. 1). Therefore, Method-C
reduces MAC from 63% to 48% compared to Method-B.

Balance Pruned Output Channel. Method-D increases
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Fig. 7. Pruned output channel per layer on EDSR

17% weight sparsity but only reduces 6% MAC compared
to Method-C in SID. Fig. 6 illustrates that Method-D prunes
less on top and bottom layers which have larger MAC/weight.

In EDSR, there is no difference among Method-A, Method-B
and Method-C because no layer is pruned by Method-A and
MAC/weight are identical for all layers (last layer could not
be pruned) as shown in Fig. 2. Fig. 7 shows that Method-D
reduces MAC from 76% to 63%, which is more than 10%, in
shortcut-connected layers.

In summary, our methodology has significant reduction on
both MAC and BW, which implies reduction on inference la-
tency. For BW, we have 39% and 20% reduction on SID and
EDSR, respectively. Our methodology also works well on
complex network architecture.



5. CONCLUSION

To minimize computation complexity without quality drop
on vision quality applications, our architecture-aware prun-
ing is optimized for pruning more for complexity metric (e.g.,
MAC) on SID and shortcut-connected layers on EDSR. The
MAC of SID and EDSR are reduced by 58% and 37%, respec-
tively. Memory bandwidth is also reduced without degrada-
tion of PSNR, SSIM and subjective quality. The reduction of
computation complexity and memory bandwidth could bene-
fit on general mobile devices without special hardware design.
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