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ABSTRACT 

Classification of 3D shapes into physically meaningful 

categories is one of the most important tasks in 

understanding the immediate environment. Methods that 

leverage the recent advancements in deep learning have 

shown to outperform the traditional approaches. However, 

performances of those methods have only been analyzed 

with relatively clean data. Three-dimensional measurement 

sets (point clouds) produced by 3D scanners are rarely that 

accurate and often contain noise, outliers or missing points. 

This paper presents an extensive analysis of the robustness 

of the state-of-the-art neural network algorithms to realistic 

data inaccuracies. Our experiments show that the existence 

of these inaccuracies can significantly affect the 

performance of the deep learning-based algorithms. 

 

Index Terms— 3D classification, neural networks, 

point cloud classification, robust 3D classification. 

1. INTRODUCTION 

Classification of 3D shapes into physically meaningful 

categories is one of the most important tasks in 

understanding the immediate environment. The availability 

of low-cost 3D sensors has increased the interest in 3D point 

cloud data utilization for understanding the surroundings. 

For instance, 3D shape classification is used in autonomous 

navigation [1][2], civil engineering [3], and robotics [4]. The 

state-of-the-art deep learning based 3D point cloud 

classification algorithms can be divided into three 

categories: Methods that use voxel grids of 3D objects [1], 

[5]–[7], methods that capture multiple views of the shape 

and use 2D CNNs [8], [9], [18], [19], [10]–[17], and 

methods directly working on point clouds [20]–[22].  

Current challenges in using 3D scanners include the 

inaccuracies due to following input corruptions: noise, 

missing points, and outliers. These inaccuracies arise due to 

several conditions such as sensor type, or interference from 

the surrounding environment. Data inaccuracy can have 

significant impact on the performance of a method. For 

example, Figure 1 compares the performance of two 

methods with clean and perturbed data. The figure shows 

that the tested methods can correctly classify the point 

clouds when data is clean. However, when noise or few 

outliers are added to the data, the performances deteriorates 

significantly.  

A trivial solution to the above problem would be to use 

filters to remove these inaccuracies before classification. 

However, cleaning data is not easy, and input data filtering 

can remove features that are important for classification. In 

fact, this is a chicken-and-egg problem and we could clean 

the data properly if we knew the underlying object. 

 

Figure 1: Classification success rate of MVCNN [23] & PointNet++[22].  

(A) Clean data, (B) with inaccuracies. Data in different columns have 

additive noise, gross outliers, missing points, and pseudo outliers (part of 

the ground plane). The probability values are truncated to two decimal 

places for convenience.  

Although a few 3D classification methods have been tested 

with unclean data, to the best of our knowledge, there is no 

comparative analysis of the robustness of point cloud 

classification algorithms. This work presents a systematic 

study of the performance of the state-of-the-art point cloud 

classification algorithms on data with above mentioned 

inaccuracies. Five competitively performing networks of 

three different approach categories (described earlier), 

covering majority of solutions, were compared. ModelNet40 

dataset, introduced in PointNet [20], was elected and used to 



 

compare the performance of chosen methods for different 

levels and types of inaccuracies. 

2. BACKGROUND 

Early machine learning algorithms for 3D shape 

classification such as Markov Networks [24] [25], support 

vector machine (SVM) [26], or cost function minimization 

[27] used frameworks with hand-tuned features. Several 

types of descriptors [28] were used to capture shape features 

along these classifiers. In contrast, deep learning networks 

that use machine learned features have delivered impressive 

performances in terms of classification accuracy and the 

number of recognized classes.  

The use of deep learning networks for 3D object 

classification started when 2D image networks were well-

developed and as such, already successful 2D techniques 

were chosen for solving 3D classification problem. 

Convolution neural networks (CNN) were one of those 

competitive 2D networks that were used for 3D 

classification. As it is not possible to feed 3D data directly to 

CNNs, different approaches were proposed such as the use 

of voxel geometries [1]. We briefly outline the main 

approaches here. 

2.1 Volumetric CNN: 

In Volumetric CNN based methods, the irregular format of 

the 3D point clouds is transformed into regular grid, making 

it possible to use volumetric or 3D CNNs. Wu et al. [5] used 

Volumetric CNN to classify and reconstruct objects from a 

single-view 2.5D depth map. They achieved 77% accuracy 

on ModelNet10 using a grid size of 30x30x30. Maturana 

and Sebastian [1] proposed VoxNet, a real time 3D CNN for 

object detection from RGB-D data. Zhou and Tuzel [6] 

proposed VoxelNet network for object detection on variable 

point density data such as those coming from LiDAR. The 

network directly receives raw point cloud data and partitions 

the space into voxels.  

The drawback of using voxel grids is its computational cost 

and memory requirement that grow rapidly with the 

resolution. However the use of octree [29][7] helped 

generate grids with finer resolution.  

2.2 Multi view CNN: 

The other approach is to use 2D CNN on the 3D mesh/CAD 

objects by rendering them into 2D images [23]. These 

methods are also called Multi-view CNN because they use 

more than one view to capture 2D images of the object. Su 

et al. [23] develop a similar network for 3D shape 

recognition and reconstruction from 12 views. Each view is 

fed into a separate CNN layer. A Pooling layer compresses 

information from these CNN layers. In another work, instead 

of feeding all images to the network directly, a set of view 

pairs images was used [10]. A GPU accelerated MVCNN 

that processes shapes efficiently for classification and 

retrieval in real-time was also proposed in [11]. Using 

panoramic view of shapes for classification and retrieval has 

also been proposed in conjunction with 2D CNNs [9][18].  

The drawbacks of multi-view CNNs include the need to 

render the object into 2D images, and the use of CAD/Mesh 

shapes. Therefore, two pre-processing steps are required to 

use point cloud objects with this approach, and both 

processes are fairly time consuming.   

2.3 Direct methods: 

Direct methods use point cloud directly as an input to the 

network. An example of this approach is PointNet [20]. 

PointNet directly works on unsorted data where the input 

data is transformed using several perceptron layers. The 

outputs of the above layers are then aggregated using an 

order-less function (max pooling layer). PointNet++ [22] is 

an improved version of PointNet that learns local structures 

at different scales using a hierarchical neural network. They 

initially group points into sets and produce new sets from 

these groups with fewer elements by farthest point sampling. 

Following that, the number of points in the neighbourhood 

of centroid points within a distance K are found. Then all 

these information is fed into PointNet for capturing point-to-

point relations in the local region. 

Other networks which also implemented PointNet include 

SO-Net [30] which uses self-organized-maps (SOM) to 

gather spatial distribution of the 3D input data, followed by 

point-to-node k-nearest neighbour search.  

Klokov and Lempitsky [21] proposed kd-trees neural 

network. The network uses the structure of the kd-tree to get 

a shape descriptor of objects. The neural network 

architecture computes the k-dimensional vectors describing 

the individual points in leaf nodes and non-leaf nodes.  

Methods that work directly on point cloud require no 

additional pre-processing compared to previous two 

categories. Thus they are much faster and avoid any issues 

that might arise due to meshing or voxel generation 

procedures. 

3. METHODOLOGY 

Our aim is to analyse the robustness of state-of-the-art 

neural network based 3D point cloud classification 

techniques to noise, outliers, and missing points. To test 

each scenario, we created a new test set by adding the 

specified inaccuracy (with its relevant parameters) to the 

original Modelnet40 test data. The accuracy of all the 

chosen methods were then evaluated on the above datasets, 

and the classification accuracies are reported in the 

following section. The training data was not changed and the 

models were trained using the clean modelnet40 dataset. 

Several papers have mentioned that training the model under 

a particular inaccuracy type helps improve the performance 

of the model under the said inaccuracy type. However, we 



[1] https://au.mathworks.com/matlabcentral/fileexchange/63731-surface-reconstruction-from-scattered-points-cloud-open-surfaces 

believe that the training a model under specific inaccuracy is 

not ideal as by definition most inaccuracies are unforeseen 

(i.e. outliers), and being robust to unforeseen inaccuracies is 

needed in practical situations. 

We selected five high performing methods from the 

networks reported in section 2, namely: MVCNN [23] for 

Multiview CNNs, Oct-Net [7] for volumetric CNNs, 

PointNet [20], PointNet++[22] for direct methods, as well as 

Kd-Net [35]. The selected methods cover most of the 

networks structures available in the literature, and provide 

classification accuracies as good as others in the same 

category.   

3.1 Dataset 

To simulate the sensor output, we will use ModelNet40 

dataset, where every object consisted of 2048 point. The 

data set is designed to be between [-1 1] and it is used as is 

without any further normalization. The third and fourth 

categories of networks work directly on point cloud and 

require no further processing. We generated mesh from the 

point cloud for the first and second categories using a crust 

algorithm [1] that produces a set of triangles. Since the 3D 

shapes were generated by meshing the point cloud, it is 

expected that the shapes to be not perfect compared to the 

original CAD models of ModelNet40 dataset. Therefore, the 

accuracy of the used networks might be slightly less than 

what authors reported in their papers.  

To test for the effect of noise, five test sets were created by 

adding Gaussian noise with zero mean and standard 

deviations 0.02, 0.04, 0.06, 0.08, and 0.10. To test for effect 

of outliers, five additional test sets were created by replacing 

2-70% of data points in each model with points uniformly 

sampled from the cube between [-1, 1] in each dimension.  

To test for the effect of pseudo outliers (outliers with 

structures), a set of points forming a planar shape 

(simulating the capture of the ground plane underneath of an 

object by a scanner) were added to existing models as shown 

in Figure 1b-4. The number of points on those planes 

represent 10% of the total number of points. To test for the 

effect of missing points, random data reduction was applied 

to all shapes with percentages from 10 to 90. 

4. RESULTS 

4.1 Noise  

Figure 2 shows the classification accuracy on the data 

perturbed with Gaussian noise. Overall, PointNet showed 

the best performance, followed by Oct-Net and Kd-Net. 

PointNet and PointNet++ showed only 2% drop in the 

accuracy at 0.02 noise level, but as the noise level increased 

to around 0.05, the performance of PointNet++ deteriorated 

significantly. At 0.02 noise level, Oct-Net and Kd-Net 

showed 6% drop in accuracy compared initial accuracy, 

while MVCNN’s accuracy dropped by 20%.  

4.2 Missing points 

Figure 3 shows the behaviour of the networks when the 

percentage of points on an object is reduced. All networks 

showed almost no performance degradation until 

approximately 50% reduction, which is about 1000 outlier 

data points per instance. Above 50%, all methods showed 

the same behaviour except for PointNet++. Since we used 

mesh for both Oct-Net and MVCNN, mesh regions are 

expected to remain unchanged when points inside these 

regions are removed. However, when a large proportion of 

points are removed, the discriminative features of the model 

will vanish, and classification becomes difficult.  

 

Figure 2: Variation of classification accuracy with different additive 

Gaussian noise. 

 

Figure 3: Variation of classification accuracy with different missing point 

ratios. 

 

4.3 Outliers 

Two types of outliers have been considered, the first type is 

the randomly distributed points as shown in the second 

object (car) in Figure 1b. Depiction of objects showed that at 

low outliers ratio, the mesh algorithm was able to eliminate 

most outliers and accurately represent the shape. However at 

higher outlier levels, the mesh algorithms produces shapes 

that are no longer close to the original model. Figure 4 

shows that at 2% outliers ratio, Kd-Net showed only 2% 

drop in the performance. The accuracies of PointNet++, 

MVCNN, and Oct-Net dropped by 25%, while that of 

PointNet dropped by 70%. After 6% outliers, PointNet++ 

showed the best performance among all methods. 

PointNet++ is hierarchical learning network rather than 

point dependant, which could be the reason behind the 

improved performance compared to PointNet.           

https://au.mathworks.com/matlabcentral/fileexchange/63731-surface-reconstruction-from-scattered-points-cloud-open-surfaces


[1] https://github.com/jongchyisu/mvcnn_pytorch 

The second type of outliers are called pseudo outliers and 

are the results of introducing sets of points that form a shape 

by themselves. Here we generated a plane located near the 

object with random orientation, as shown in Figure 1b-4. 

This type of data appears when part of the object is 

reflective or scanner captures part of the ground underneath 

the object. Table 1 shows the performance of the networks 

with this type of outliers. The performance of both voxel 

network and MVCNN is still high, indicating that CNN 

filters still capture the object shape. However, in MVCNN, 

the accuracy dropped at a higher rate than voxel CNN, 

probably due to the fact that the plane could have blocked 

the object from being detected from certain views.  

 

Figure 4: Variation of classification accuracy with different gross outliers 

ratios 

Table 1: Classification accuracy for data corrupted with 10% 

pseudo outliers. 

 

5. DISCUSSION 

5.1 Using point clouds on mesh-based networks  

We also investigated the performance of MVCNN and Oct-

Net networks without the mesh generation stage. Here, the 

point clouds are directly used to generate voxels or 2D 

rendering [1] using Phong shading. The trained Oct-Net 

showed impressive performance in the presence of outliers, 

as seen in Figure 5. The network accuracy dropped to 70% 

at 2% outliers ratio, but the accuracy hardly changes after 

that. Training MVCNN on point clouds, however, did not 

resolve the problem of outliers and the accuracy dropped to 

25% accuracy at only 2% outliers ratio, far worse than the 

mesh case. One reason could be that each rendered view in 

MVCNN accumulate all the outliers, so the rendered images 

have more levels of outliers than before. We then trained the 

network on top view only. This showed slightly better 

performance than using all 12 views, however the accuracy 

is still worse than the mesh case. For pseudo outliers, the 

accuracy increased from 75% to 86% for MVCNN, and this 

could be because the shape can be seen through the pseudo 

outliers. Also, the accuracy increased from 81% to 86% for 

Oct-Net, meaning that the accuracy was not affected much 

by this type of outliers.  

Figure 6 shows the performance of the MVCNN and Oct-

Net networks trained on point clouds or mesh in the 

presence of noise. It can be seen that using point clouds 

leads to better performance. Also, Oct-Net with point cloud 

input exceedingly performed better than all other networks. 

On the other hand, Figure 7 shows that the two networks 

using point cloud perform worse that their mesh based 

counterparts when the data is corrupted by missing points. 

 

Figure 5: Variation of classification accuracy versus outliers for networks 

trained on point clouds. pc means network use point cloud. 1v means 

network trained on one view.  

 

Figure 6: Variation of classification accuracy versus noise for networks 

trained on point cloud. pc means network use point cloud. 

 

Figure 7: Variation of classification accuracy versus missing points for 

networks trained on point clouds. pc means network use point cloud.   

6. CONCLUSION 

We tested recent network algorithms for 3D shape with the 

presence of the data inaccuracies. Three types of data 

inaccuracies are assumed to appear with 3D scanners, noise, 

missing points, and outliers. The results showed that all the 

tested networks can handle significant amount of missing 

points and the performance degrades gradually with additive 

Gaussian noise. However, no method was robust to outliers 

and showed steep deterioration in performance when outliers 

were introduced. The results also show that Oct-Net without 

the mesh generation step is fairly robust to outliers.

 Method MVCNN   Oct-Net PointNet PointNet
++ 

Kd-Net 

Accuracy 74% 81% 3.7%  3.3% 75% 

https://github.com/jongchyisu/mvcnn_pytorch
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