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ABSTRACT

This paper presents the KPSNet, a KeyPoint Siamese Net-
work to simultaneously learn task-desirable keypoint detector
and feature extractor. The keypoint detector is optimized to
predict a score vector, which signifies the probability of each
candidate being a keypoint. The feature extractor is optimized
to learn robust features of keypoints by exploiting the corre-
spondence between the keypoints generated from two inputs,
respectively. For training, the KPSNet does not require to
manually annotate keypoints and local patches pairwise. In-
stead, we design an alignment module to establish the corre-
spondence between the two inputs and generate positive and
negative samples on-the-fly. Therefore, our method can be
easily extended to new scenes. We test the proposed method
on the open-source benchmark and experiments show the va-
lidity of our method.

Index Terms— 3D keypoints, point cloud registration,
deep learning

1. INTRODUCTION

Keypoint detection plays a vital role in many computer vi-
sion tasks, such as image alignment, image stitching, 3D re-
construction, object recognition, indexing and retrieval. For
2D keypoint detection, the goal is to find same local features
across images taken from different views or time. Many suc-
cessful approaches have been proposed, such as SIFT and
SURF. Similarly, 3D keypoint detection pursues a repeatable
and distinctive 3D local representation from 3D data, e.g.,
point cloud and 3D mesh, which can be used to establish cor-
respondences between 3D surfaces. Although more and more
researchers work on 3D keypoint detection in recent years,
it’s still an open research topic. One of the biggest challenges
is that it’s difficult to define a keypoint in a 3D point cloud, as
a point cloud consists of a set of discrete points with nonuni-
form densities. In addition, it’s impossible for people to man-
ually label the position of a keypoint in a 3D point cloud.
Lack of annotated dataset limits researchers leveraging pow-
erful supervision learning methods on 3D keypoint detection.

Lots of relevant research focuses on 3D local descriptors
but does not address the detection of keypoint positions. So

far, many 3D descriptors have been proposed [1]. [2, 3, 4] use
histograms to estimate the similarity of keypoints by counting
the number of points in each spatial bin or considering surface
normal property. These methods are designed for specific ap-
plications and it’s hard to extend to new scenes. [5, 6] learns
local 3D features by using a siamese 3D convolutional neu-
ral network and has made significant progress. They collected
pairs of matching and non-matching local 3D patches as train-
ing samples, and trained a 3D ConvNet-based descriptor.

For keypoint detector, it’s common to use a hand-crafted
saliency function by combining the domain knowledge, or
uniformly select some local patches and taking their centres
as keypoint. Differently, [7] proposed a descriptor-specific
keypoint detector, which casts 3D keypoint detection as a
classification problem in terms of whether the points can be
matches by a pre-defined 3D descriptor. The performance of
this method depends on the pre-defined 3D descriptor. How-
ever, learning a good 3D descriptor needs a large amount of
annotated keypoints, and thus causes a chicken-egg problem.

In this paper, we explore whether one can simultaneously
learn 3D keypoint detector and feature extractor in a uni-
fied framework. Inspired by [8], which learns an end-to-end
framework for keypoint detection and its representation using
depth images, we present a KeyPoint Siamese Network based
framework (KPSNet) to simultaneously detect 3D keypoints
and learn their feature representations directly from 3D point
clouds. The KPSNet receives as input pairs of point clouds
and their relative transformation matrix. Each branch of the
KPSNet contains a keypoint detection sub-network to pre-
dict keypoints and a feature extraction sub-network to learn
3D features. These two branches are the same. We design
an alignment module to establish correspondence between
the two branches in order to jointly optimize the whole net-
work. In other words, the alignment module generates pairs
of matching and non-matching samples and labels them on-
the-fly. Then we train the network to minimize the distance
in feature space between matching pairs and maximize the
distance between non-matching pairs. The key contributions
of this work can be concluded as follows:

• We propose a unified framework to simultaneously
learn a keypoint detector and a feature extractor for 3D



Fig. 1. Overview of our KPSNet. The KPSNet takes two point clouds and their relative transformation matrix as input and gen-
erate some candidates from each input point cloud. These candidates, along with their support regions, feed into a MLP module
(MLP(64,128,256) denotes there are three convolution layers in this MLP module and the number of filters are 64,128,256
separately), followed by a max pooling layer. The keypoint detector branch generates predictions of each candidates, while the
keypoint feature extractor branch generates features of each candidate. For each input point cloud, we pass the predictions and
labels generated from the alignment module to the score loss. The features from the both two input point clouds are organized
into pairs to the contrastive loss. Note that the weights between the two branches of the Siamese network are shared. For details
on the notations please see section 2.2.

point cloud registration using point cloud data,

• We design an alignment module to establish the corre-
spondence between the two inputs and generate pairs
of positive and negative samples during training pro-
cess. This avoids separately annotating keypoints and
their matching relationships in 3D point clouds, which
is time consuming and labor-intensive.

2. METHOD

2.1. Architecture

Fig.1 demonstrates the architecture of our proposed KPSNet.
Each branch takes an entire point cloud as input and contains
a keypoint detector and a feature extractor. It firstly generates
some point clusters from the point cloud similar to [9, 10]. We
consider the centroids of these point clusters as candidates of
the keypoints and define the corresponding point clusters as
their feature support regions. These candidates, along with
their feature support regions, are fed into the keypoint detec-
tor and the feature extractor respectively. The keypoint detec-

tor contains two multi-layer perception (MLP) modules [11]
and a max pooling layer. The output is a vector which signi-
fies the probability of each candidate being a keypoint. The
feature extractor contains three MLP modules with skip link
feature concatenation. It outputs feature representations of the
candidates. The keypoint detector and feature extractor share
the first MLP module.

These two branches of our KPSNet share all structures
and weights and linked by an alignment module. The align-
ment module establishes correspondence between the two
sets of candidates using the known transformation matrix,
thereby generating positive and negative pairs of samples.
These pairs are passed to a contrastive loss to minimize
feature distance between positive pairs and maximize the
distance between negative pairs. In addition, the alignment
module also generates a label for each candidate. The score
loss use these labels to lead the keypoint detector to find
as more keypoints as possible. Apparently, our proposed
method does not require to separately annotate keypoints
or local patches pairwise, which is cost-saving and easily
extended to new scenes.



2.2. Training

The proposed KPSNet takes pairs of point clouds {P 1, P 2}
and their relative transformation matrix T as input. Each
pair of point clouds must have some overlap. From each
point cloud, the KPSNet generates a set of candidates, Km =
{(xmn , smn , f

m
n )|n = 1, ..., N}, where m ∈ {1, 2} corresponds

to the pair of point clouds, N is the number of candidates,
xm
n = (xn, yn, zn) are the 3D coordinates of the points, smn is

the output of the keypoint detector which signifies the proba-
bility of the candidate being a keypoint, and fmn is the corre-
sponding feature vector.

Alignment Module Considering the point cloud registra-
tion task, we desire that a keypoint should be repeatable and
distinctive. To be specific, if a keypoint is detected some-
where in one point cloud, then we desire that it can always be
detected no matter what transformations apply to the coordi-
nate system of the point cloud. In addition, for two different
point clouds with different densities and coordinate systems,
keypoints are expected to found in their overlapping region as
more as possible. Under this scenario, we design the align-
ment module to establish the correspondences between the
two sets of candidates and generate labels on-the-fly for train-
ing the whole model.

The alignment module receives the coordinates and
feature vectors of the two sets of candidates,{x1, f1} and
{x2, f2}. It firstly transforms x1 and x2 to the same coordi-
nate system using the given transformation matrix T and cal-
culates the Euclidean distance between any two points from
x1, x2 respectively. Then for each candidate x1i (i = 1, ..., n),
we find the closest candidate x2j (j = 1, ..., n) based on
the Euclidean distance and form the nth pair of features
F ′
n = (f1i , f

2
j ). If the distance is less than a small threshold

τ , d(x1i , x2j ) < τ , we consider F ′
n as a positive pair, denote

as l′n = 1. At the same time, we take x1i and x2
j as the

positive samples of P 1 and P 2 respectively for training the
keypoint detection sub-network and denoted as l1i = l2j = 1.
Otherwise, we label F ′

n, x1
i and x2j as negative, denote as

l′n = l1i = l2j = 0. In this way, we obtain the required labels
for training the keypoint detector and the feature extractor.

Joint Optimization We are interested in simultane-
ously learning a keypoint detector and a feature extractor
for point cloud registration. As mentioned above, the de-
sirable keypoints should have properties like repeatability,
view-invariant and distinctive. Towards this end, we intro-
duce the following multitask loss similar to [8]:

L
(
{K1,K2}

)
=αLc (F

′, l′)+

βL1
s

(
s1, l1

)
+ βL2

s

(
s2, l2

) (1)

where F ′ = {F ′
n|n = 1, ..., N} is the set of feature pairs gen-

erate by the alignment module, l′ = {l′n|n = 1, ..., N} is the
set of labels of F ′, s1 = {s1n|n = 1, ..., N}, s2 = {s2n|n =
1, ..., N} are outputs of the keypoint detector and l1, l2 are

labels of s1, s2, respectively. α, β are weighted factors. Lc

is a modified contrastive loss that optimizes over the feature
representation of pairs of the keypoints. Its basic principle is
minimizing the feature distance of positive pairs and maxi-
mizing the feature distance of negative pairs. The contrastive
loss is defined as:

Lc (F
′, l′) =

∑N
n=1 l

′
n

∥∥f1n − f2n
∥∥2

2Npos
+∑N

n=1 (1− l′n)max
(
0, δ −

∥∥f1n − f2n
∥∥)2

2Nneg

(2)

where δ is the margin, Npos, Nneg are number of positive and
negative pairs respectively and N = Npos + Nneg. Here,
we conveniently let f1n, f

2
n as the nth feature pair. Considering

the imbalance between the class sizes of positive and negative
pairs, we normalize the contribution of each class to the loss
by their number proportion.
Lm
s is the score loss of the prediction from the keypoint

detection sub-network. As it’s hard to define how a keypoint
should be like, in this paper, we take task-desirable keypoints
as the objective. In other words, we train the keypoint detec-
tion sub-network to select points for which we can find posi-
tive correspondence between two point clouds taken from dif-
ferent positions. So we only consider the positive points and
and want to detect as many as positive keypoints as we can.
The score loss is defined as:

Lm
s (sm, lm) = −

γ
∑N

n=1 l
m
n log smn + 1

Npos + 1
(3)

where m ∈ {1, 2} corresponds to the pair of input point
clouds, γ is a regularization parameter.

3. EXPERIMENTS

3.1. Dataset and Setup

We use several open-source RGB-D reconstruction datasets
provided by [5] for training and use the geometric regis-
tration benchmark for evaluation. These datasets consist
of SUN3D[12, 13], 7-Scenes[14], RGB-D Scenes v2[15],
BundleFusion[16] and Analysis by Synthesis[17]. We split
these datasets into training and testing as the same as [5]. In
order to train our model, we firstly create 3D point clouds
from the training split of the RGB-D reconstruction datasets
using the 3dmatch-toolbox. Then we prepare our training
data by creating pairs of samples following the method of
3DMath geometric registration benchmark, along with their
transformation matrixes. In total, we collect 22.8K pairs of
training samples.

In our experiment, the threshold τ used in the alignment
module is set to 0.05m. The support region of the candidate
is set to a ball with radius 0.2m. The weighted factors α is set



Fig. 2. Visualization of estimated transformations. The first two columns show two diffident point clouds to be registered. The
last columns show the results after registration.

Table 1. Our evaluations on the 3D-match benchmark
Spin Images SHOT FPFH USC KPSNet(ours)

recall prec. recall prec. recall prec. recall prec. recall prec.
Red Kitchen 0.27 0.49 0.21 0.44 0.36 0.52 0.52 0.60 0.58 0.72

Home 1 0.56 0.14 0.37 0.13 0.56 0.16 0.35 0.16 0.54 0.23
Home 2 0.35 0.10 0.30 0.11 0.43 0.13 0.47 0.24 0.40 0.19
Hotel 1 0.37 0.29 0.28 0.29 0.29 0.36 0.53 0.46 0.50 0.53
Hotel 2 0.33 0.12 0.24 0.11 0.36 0.14 0.20 0.17 0.40 0.23
Hotel 3 0.32 0.16 0.42 0.12 0.61 0.21 0.38 0.14 0.38 0.17

Study Room 0.21 0.07 0.14 0.07 0.31 0.11 0.46 0.17 0.52 0.15
MIT Lab 0.29 0.06 0.22 0.09 0.31 0.09 0.49 0.19 0.36 0.13
Average 0.34 0.18 0.27 0.17 0.40 0.21 0.43 0.27 0.46 0.30

to 0.5 and β is set to 0.2. The margin δ and the regularization
parameter γ are both set to 0.5.

In order to validate our method, we test our KPSNet on
the geometric registration benchmark. We predict the coor-
dinates and feature representations of keypoints from each
testing point cloud using our model. Then we perform near-
est neighbor matching on them and use RANSAC on these
nearest neighbor matches to estimate a rigid transformation
between every two point clouds using 3dmatch-toolbox. The
number of RANSAC iterations is limited to 5,000. No subse-
quent refinement, e.g. using ICP is performed.

3.2. Results

Fig.2 shows the visualization for our proposed KPSNet under
several challenging scenarios with less variation in geometry.
It can be intuitively seen that the main parts of each 3D point
cloud pair have been perfectly matched.

We also evaluate our method against the baselines of Spin
Images[2], SHOT[18], FPFH[3], USC[4]. Experiment results
are shown in Table.1. It can be concluded that our proposed
KPSNet outperforms all the hand-crafted methods in average
recall and averge precision. Generally, the precision increases

with the number of keypoints. Even though we only use 1024
keypoints and 5000 RANSAC iterations in our evaluation, our
method still obtains a competitive performance. It is for sure
that with more keypoints and more iterations, our proposed
KPSNet can achieve a more remarkable performance

4. CONCLUSIONS

In this paper, we presented KPSNet, a unified framework to
simultaneously learn a task-desirable keypoint detector and
feature extractor for point cloud registration. We designed a
novel strategy to generate required labels during training by
using indirect ground truth of point cloud registration task,
which avoid the costly manual keypoint annotation. To train
our proposed network, we introduced a multitask losss func-
tion and jointly optimized the keypoint detector and feature
extractor. Experiment results on public datasets show that our
approach is rather competitive than other 3D keypoint feature
extraction methods for 3D point cloud registration task. Next
step, we further improve the novel methodology by adding
more context information and use it into more outdoor scenes.
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