
1

Learning Hierarchical Features for Visual Object
Tracking with Recursive Neural Networks

Li Wang, Member, IEEE, Ting Liu, Student Member, IEEE, Bing Wang, Student Member, IEEE,
Xulei Yang, Member, IEEE and Gang Wang, Member, IEEE

Abstract—Recently, deep learning has achieved very promising
results in visual object tracking. Deep neural networks in existing
tracking methods require a lot of training data to learn a large
number of parameters. However, training data is not sufficient
for visual object tracking as annotations of a target object
are only available in the first frame of a test sequence. In
this paper, we propose to learn hierarchical features for visual
object tracking by using tree structure based Recursive Neural
Networks (RNN), which have fewer parameters than other deep
neural networks, e.g. Convolutional Neural Networks (CNN).
First, we learn RNN parameters to discriminate between the
target object and background in the first frame of a test sequence.
Tree structure over local patches of an exemplar region is
randomly generated by using a bottom-up greedy search strategy.
Given the learned RNN parameters, we create two dictionaries
regarding target regions and corresponding local patches based
on the learned hierarchical features from both top and leaf nodes
of multiple random trees. In each of the subsequent frames,
we conduct sparse dictionary coding on all candidates to select
the best candidate as the new target location. In addition, we
online update two dictionaries to handle appearance changes
of target objects. Experimental results demonstrate that our
feature learning algorithm can significantly improve tracking
performance on benchmark datasets.

Index Terms—Visual object tracking, feature learning, Recur-
sive Neural Networks

I. INTRODUCTION

V ISUAL object tracking aims to locate a target object in
a video sequence given its location in the first frame. It

is a very challenging problem because target appearance may
vary dramatically due to illumination change, partial occlusion,
object deformation, etc. To solve these issues, some trackers
[1] employ local patch based appearance models to achieve
very promising performance.

Feature representation is very important to object tracking.
Recently, deep learning based trackers [2][3][4][5][6][7] have
achieved very promising performance by using learned hier-
archical features rather than raw pixel values or hand-crafted
features. Deep neural networks usually require a lot of training
data to learn a large number of parameters. However, training
data is not sufficient for visual object tracking as annotations
of a target object are only available in the first frame of a test
sequence.

To overcome this problem, existing feature learning based
trackers pre-train their neural networks by using auxiliary data

L. Wang and X. Yang are with Agency for Science, Technology and Re-
search (A*STAR), Singapore. (e-mail: wa0002li@e.ntu.edu.sg; yangxl@i2r.a-
star.edu.sg)

T. Liu, B. Wang and G. Wang are with Alibaba AI Labs, China. (e-mail:
liut0016@e.ntu.edu.sg; wang0775@e.ntu.edu.sg; gangwang6@gmail.com)

and then fine-tune network parameters according to specific
target objects. Different from these methods, we propose
to learn hierarchical features for visual object tracking by
using tree structure based Recursive Neural Networks (RNN),
which have fewer parameters than other deep neural networks,
e.g. Convolutional Neural Networks (CNN). As a result, our
feature learning method does not require any network pre-
training on auxiliary data and will not suffer from fine-tuning
network parameters.

First, we learn RNN parameters to discriminate between
target object and background in the first frame of a test
sequence. Tree structure over local patches of an exemplar
region is randomly generated by using a bottom-up greedy
search strategy. Given the learned RNN parameters, we create
two dictionaries regarding target regions and corresponding
local patches based on the learned hierarchical features from
both top and leaf nodes of multiple random trees. In each of
the subsequent frames, we conduct sparse dictionary coding
on all candidates to select the best candidate as the new target
location. In addition, we online update two dictionaries to
handle appearance changes of target objects.

The main contribution is that hierarchical features are
learned to discriminate between target and background by
using RNN which can successfully encode spatial information
among local patches of a target object based on multiple ran-
dom trees. RNN features learned at top nodes of random trees
are able to capture structural information of target objects,
which are robust to holistic appearance changes caused by
illumination change or object deformation. Moreover, RNN
features learned at leaf nodes represent local patches and
capture local appearance changes due to partial occlusion.
Therefore, our hierarchical features learned from both top
and leaf nodes are beneficial for visual object tracking. Ex-
perimental results demonstrate that using our feature learning
method can significantly improve tracking performance on the
benchmark dataset [8].

II. RELATED WORK

Visual Object Tracking. During the past few decades, vi-
sual object tracking have received much attention. Many track-
ing algorithms have achieved very promising results. We refer
interested readers to some recent surveys [8][9]. Our feature
learning algorithm is integrated into a baseline tracker ASLA
[1] belonging to generative trackers which focus on modeling
target appearance without considering background. Other gen-
erative trackers utilize subspace learning [10][11], sparse cod-
ing [12][13][14], Gaussian mixture model [15], kernel-based

ar
X

iv
:1

80
1.

02
02

1v
1 

 [
cs

.C
V

] 
 6

 J
an

 2
01

8



2

model [16], visual decomposition model [17], etc. Although
the baseline tracker in this paper is generative, our features
are learned discriminatively to differentiate target objects from
background. Discriminative trackers formulate object tracking
as a binary classification problem. They use many machine
learning algorithms such as SVM [18][19][20][21], boosting
[22][23][24], graph embedding [25], multiple instance learning
[26], metric learning [27][28], Gaussian process regression
[29], etc.

Deep Learning. Recently, deep learning has achieved very
promising results in visual object tracking [2][3][4][5][6][7].
Usually, deep neural networks require a lot of training data.
However, only the first frame of a test sequence is annotated
in visual object tracking. To overcome this problem, some
deep learning based trackers pre-train their neural networks
by using auxiliary data, e.g. 80 million tiny images dataset
[2], face detection dataset [3] and Hans van Hateren natural
scene videos [4]. In contrast, our feature learning method does
not require any network pre-training on auxiliary data. Some
other deep learning based trackers adopt existing deep neural
networks, e.g. R-CNN model built upon Caffe Library [5] and
VGG network pre-trained on ImageNet [6], and then fine-
tune network parameters based on training data of specific
target objects. Different from these methods, we learn RNN
parameters in the first frame of a test sequence and fix the
parameters in the subsequent frames. Therefore, our method
does not suffer from fine-tuning network parameters.

Recursive Neural Networks. RNN has been successfully
applied to natural language processing for sentiment analysis
[30], phrase and sentence modeling [31] and paraphrase de-
tection [32]. Also, RNN is applied for parsing natural scene
[33] and 3D object classification [34]. To our best knowledge,
we are the first to learn hierarchical features by using RNN
for visual object tracking.

III. LEARNING HIERARCHICAL FEATURES USING RNN
Deep learning has achieved very promising performance

for visual object tracking. Some deep learning based track-
ers [2][3][4] require auxiliary data to pre-train their neural
networks. This kind of pre-training is necessary for feature
learning but inconvenient for visual object tracking. Moreover,
some other trackers [5][6] employ the deep neural networks
pre-trained already and then fine-tune them during tracking.
However, annotation of a target object in a test sequence is still
limited for fine-tuning such deep neural networks with large
numbers of parameters. To avoid inconvenient pre-training and
fine-tuning, we propose to learn hierarchical features for visual
object tracking by using tree-structure based RNN which has
fewer parameters and hence requires less training data. We
learn RNN parameters to discriminate target from background
by using target annotation in the first frame and fix them
for extracting hierarchical features from candidate regions in
subsequent frames. Moreover, our learned hierarchical features
are able to capture spatial information over local patches of a
target region based on multiple random trees. This capability
is beneficial for visual object tracking.

In this section, we present details of our feature learning
algorithm. First, we give an overview of RNN. Then, we

explain how to extract hierarchical features based on RNN.
Next, we describe how to generate trees over local patches of
target regions. Last, we depict how to discriminatively learn
RNN parameters.

A. Overview of RNN

RNN is a deep neural network established by applying the
same set of parameters recursively over a certain structure.
In our case, RNN [33] is based on tree structure over local
patches of a target object. There are three types of parameters:
W raw, W rnn and W label. W raw and W rnn are used to extract
hierarchical features from candidate regions based on multiple
random trees. W label is to map extracted features regarding
candidate regions into different classes (target object and
background in this paper). In the first frame of a test sequence,
we jointly learn these three types of parameters together to
discriminate target from background. In the subsequent frames,
we use the learned W raw and W rnn to extract hierarchical
features for candidate regions.

B. Extracting Features Using RNN

Given a tree over local patches of a target region (see
details in Section III-C) and learned RNN parameters W raw

and W rnn (see details in Section III-D), Figure 1 illustrates
an instance of extracting hierarchical features from a target
region. We employ the local patch setting in ASLA [1] and
decompose a target object observation x ∈ R32×32 into 9
overlapping local patches p ∈ R16×16. Each local patch can
be vectorized into an 256-dimensional raw pixel value feature
Vi ∈ R256×1, i = 1, . . . , 9. Then, we utilize a neural network
layer to map raw pixel values (orange circles in Figure 1) into
a n-dimensional RNN feature space (blue circles). These RNN
features at leaf nodes can be calculated as follows:

ζi = f(W rawVi + braw), (1)

where W raw ∈ Rn×256 is the transformation matrix, braw is
the bias, f is the sigmoid function f(x) = 1/(1 + e−x) and
ζi ∈ Rn×1 is the RNN feature at leaf nodes.

In the given tree, each node is associated with the same
basic neural network illustrated in Figure 1. The basic network
computes parent features based on two child input nodes as
follows:

η(i,j) = f([W rnn,W rnn][τi; τj ] + brnn), (2)

where W rnn ∈ Rn×n is the transformation matrix, brnn is the
bias, f is the sigmoid function f(x) = 1/(1 + e−x), [τi; τj ] ∈
R2n×1 is the concatenated feature for two child nodes and
η(i,j) ∈ Rn×1 is the parent feature. Note that the child node
pair ([τi; τj ]) possibly includes two leaf nodes ([ζi; ζj ]), or
two non-terminal nodes ([ηi; ηj ]), or one leaf node and one
non-terminal node ([ζi; ηj ]). Given the tree structure and the
RNN parameters, we can extract hierarchical features from a
target region at the top node of the RNN tree by recursively
using the same basic neural network in a bottom-up manner.
As a result, learned hierarchical features can capture spatial
information over local patches of the target object.



3

RNN Feature Space

Raw Pixel Values

rnnW

Child Node

Parent Node

Basic Neural Network

labelW
Top Node

Class Label

Softmax Layer

Top Node: 

Target Object

(32x32)

Non-Terminal 

Node

Leaf Node: 

Local Patches

(16x16)
rnnW rnnW

rnnW rnnW rnnW rnnW

1

2 5

8 9 4 7

3 6

10

11

12

13

14 15

16

17

rnnW
rnnW

rnnW rnnW

rnnW rnnW

rnnW rnnW

rnnW

rnnW rnnW

rawW

rawW rawW

rawW
rawW rawW rawW

rawW rawW

Fig. 1: Illustration of extracting hierarchical features using RNN with a known tree structure over the local patches of a target
object.

1

Target Object Image

2 3

4

7

5 6

8 9

1
1

2

4
3

6
5

7
8
9

2 3 4 5 6 7 8 9

Adjacency Matrix

Fig. 2: Illustration of the spatial layout of local patches in
a target object and the corresponding adjacency matrix. For
example, patch 1 and 2 can be merged as they are spatially
neighboring, so the corresponding matrix element is 1.

C. Generating Random Trees

To extract hierarchical features using RNN, we need to
generate a tree structure over local patches of a candidate
region. There is no objective criterion to identify the best

tree. Therefore, we randomly generate trees by using a greedy
bottom-up searching strategy. We employ a number of trees
together to extract RNN features, which are expected to be
robust to certain noisy tree structure.

We first define an adjacency matrix A, where A(i, j) = 1
if local patch i and j are spatially neighboring. It means that
local patch i and j can be merged during generating random
trees. Figure 2 illustrates the spatial layout of local patches in
a target object and the corresponding adjacency matrix, which
is fixed in this paper.

Given the adjacency matrix A, we can find the pairs of
neighboring local patches and denote the set of these potential
child node pairs as follows:

C = {[pi, pj ]|A(i, j) = 1}, (3)

where pi indicates the ith local patch. At the beginning (see
Figure 2), we have the following pairs: {[p1, p2], [p1, p4], . . . ,
[p9, p6], [p9, p8]}. Suppose we randomly select the pair [pi, pj ],
we remove all pairs with either pi and pj from the set C as
follows:

C = C − {[pi, pm]|m ∈ Neigh(i)} − {[pj , pn]|n ∈ Neigh(j)},
(4)



4

where Neigh() denotes the neighborhood of a local patch.
Then, we add new child pairs to the set C as follows:

C = C ∪ {[p(i,j), pk]|k ∈ Neigh(i) ∪Neigh(j), k 6= i, j},
(5)

where we randomly select another pair to merge. In the same
way, we update the set C and then repeat the previous steps
until only one child node pair is left in the set C. Finally, we
can achieve the top node of the tree over all local patches of
a target region by merging the last child node pair in set C.

We use the RNN tree shown in Figure 1 as an exam-
ple. Circles on top of nodes indicate the index numbers of
nodes. We can observe that local patch 8 and 9 merge first
and the corresponding child node pair [p8, p9] is selected.
Consequently, we update C = {[p1, p2], [p1, p4], [p2, p1],
[p2, p3], [p2, p5], [p3, p2], [p3, p6], [p4, p1], [p4, p5], [p4, p7],
[p5, p2], [p5, p4], [p5, p6], [p6, p3], [p6, p5], [p7, p4], [p(8,9), p5],
[p(8,9), p6], [p(8,9), p7], [p5, p(8,9)], [p6, p(8,9)], [p7, p(8,9)]}.
Next, we randomly select another pair in the updated C. In this
example, local patch 2 and 5 are subsequently merged. Then,
we repeat the previous manipulations until only one child node
pair is left in the set C. As illustrated in Figure 1, we finally
obtain the tree over local patches of the target region after
merging local patch 1 and non-terminal node 16.

D. Discriminative Learning of RNN Parameters

Previously, deep learning based tracking methods require
pre-training from auxiliary data or fine-tuning neural networks
pre-trained already according to specific target object. In
contrast, we learn RNN parameters only based on target
annotation and background data in the first frame of a test
sequence. Then, we fix the learned RNN parameters W raw

and W rnn for extracting hierarchical features from candidate
regions in the subsequent frames.

To discriminatively learn RNN parameters, we need to add
a softmax layer with the parameter W label, which connects
RNN features at top nodes and class labels. Suppose we have
N training samples X = {x1, . . . , xN} in terms of target and
background, which are respectively sampled nearby and away
from the target location in the first frame. We also have the cor-
responding labels L = {lGT

1 , . . . , lGT
N }, lGT

i ∈ {[1; 0], [0; 1]}
([1; 0] and [0; 1] indicate target and background respectively
in our implementation). For each training sample xi, RNN
features can be extracted at the top node of a random tree
based on the parameters W raw and W rnn. Then, we apply
the softmax layer illustrated in Figure 1 for predicting class
label:

lRNN
i = softmax(W label(ηtop|Ti)), (6)

where W label ∈ R2×n and ηtop is the learned RNN features
at the top node of a random tree Ti ∈ T (xi). T (xi) is all
possible trees over local patches of xi. Consequently, we can
compute the loss between the predicted label and the ground
truth label for each training sample by using the cross-entropy
error as follows:

δ(xi, l
GT
i |θ, Ti) = − < lGT

i , log(lRNN
i ) >, (7)

where θ = {W raw,W rnn,W label}. Finally, we have the
objective function over all training samples as follows:

Φ(θ) =
1

N

N∑
i=1

δ(θ) +
λ

2
‖θ‖2 (8)

where λ is the regularization parameter. The gradient of our
objective function of Equation 8 w.r.t. the parameter set θ can
be computed as follows:

∂Φ

∂θ
=

1

N

N∑
i

∂δ(θ)

∂θ
+ λθ, (9)

The optimization can be performed by using backpropagation
through structure [35], which splits error messages at each
node and then propagates to the child nodes. Then, we employ
L-BFGS [36] to optimize our objective function.

IV. OUR TRACKING SYSTEM

Although the softmax layer of RNN can classify a candidate
into target or background, it is relatively weak compared to the
classifiers in state-of-the-art discriminative trackers. Therefore,
we use the softmax layer to learn RNN parameters only and
then integrate learned features into a state-of-the-art tracker
ASLA [1] with an adaptive local sparse appearance model.
Interested readers may refer to ASLA [1] for more details.

Suppose we have an observation set of target x1:t =
{x1, . . . , xt} up to the tth frame and a corresponding feature
representation set z1:t = {z1, . . . , zt}, we can calculate the
target state yt as follows:

yt = arg max
yi
t

p
(
yit|z1:t

)
, (10)

where yit denotes the state of the ith sample in the tth frame.
The posterior probability p (yt|z1:t) can be inferred by the
Bayes’ theorem as follows:

p (yt|z1:t) ∝ p (zt|yt)
∫
p (yt|yt−1) p (yt−1|z1:t−1) dyt−1,

(11)
where z1:t denotes the feature representation, p (yt|yt−1) de-
notes the motion model and p (zt|yt) denotes the appearance
model. In ASLA [1], the representations z1:t simply use
raw pixel values of local patches, and the appearance model
p (zt|yt) employs sparse coding. In our tracker, we learn
hierarchical features from raw pixel values by using RNN.
First, we learn RNN parameters by using 20 positive (nearby
target) and 100 negative (background) samples in the first
frame of a test sequence. Then, we create two dictionaries
regarding target regions and corresponding local patches based
on learned RNN features respectively from top and leaf nodes
of multiple random trees in the first 10 frames. In each of
subsequent frames, we conduct sparse coding on all candidate
regions in terms of two dictionaries regarding target regions
and local patches respectively. In addition, we online update
two dictionaries every 5 frames. In our implementations,
we fix the dimension size of RNN feature space n = 50,
the regularization parameter λ = 0.0001 and the motion
parameters at [10, 10, 0.01, 0, 0.005, 0] for all test sequences.
We summarize our tracker using learned RNN features in
Algorithm 1.



5

Algorithm 1 Our Tracker Using Learned RNN Features
1: Input: the last target state yt−1, the RNN parameters θ

learned in the first frame and two existing dictionaries
respectively regarding target regions and local patches.

2: Generate 600 target state candidates yit and the corre-
sponding image observations xit nearby the previous target
state yt−1.

3: Extract hierarchical features zit from each image observa-
tion xit by using the RNN parameter θ learned in the first
frame.

4: Calculate the posterior probability p
(
yit|z1:t

)
according to

Equation 11.
5: Predict the target state by yt = arg maxyi

t
p
(
yit|z1:t

)
.

6: Update two dictionaries every 5 frames with learned RNN
features respectively from top and leaf nodes of multiple
random trees over the target region regarding the predicted
state yt.

7: Output: the predicted target state yt and two updated
dictionaries.

V. DISCUSSION

Parameter Size. As sharing parameters in different layers
of tree structures, RNN has fewer parameters than other deep
neural networks, e.g. Convolutional Neural Networks (CNN).
The parameter set for RNN is θ = {W raw,W rnn,W label},
where W raw ∈ R50×256, W rnn ∈ R50×50 and W label ∈
R2×50. We can find that our RNN model has totally 15400
parameters, which are much less than CNN (e.g. 60 million
parameters in [37]). Therefore, our feature learning algorithm
using RNN does not require any pre-training and fine-tuning,
which are actually not easy for visual tracking applications.

Computational Cost. We run experiments on a PC without
using any multi-core setting. The baseline tracker ASLA [1]
can achieve about 3 fps. Our tracker using learned hierarchical
features can achieve about 1.5 fps. We have two major
factors affecting efficiencies of our tracker: i) Learning RNN
parameters in the first frame of a test sequence; ii) Extracting
hierarchical features from candidate regions based on multiple
random trees in each frame of the subsequent frames. As
extracting features from 600 candidates consumes too much
time, we use a coarse-to-fine strategy which first identifies 20
promising candidates according to tracking results from the
baseline tracker ASLA [1] and then ranks these 20 candidates
based on our learned hierarchical features. Anyway, the main
objective in this paper is to show that our learned hierarchical
features can improve tracking performance. The efficiency of
our tracker could be enhanced by using parallel programming
skills (e.g. parfor in MATLAB) or other advanced hardware
(e.g. GPU).

VI. EXPERIMENTS

Benchmark. We evaluate tracking performance on a recent
public benchmark [8] containing 50 sequences which covers
almost all challenging issues such as illumination changes,
pose variations, occlusion, in/out-of-plane motions and clut-
tered background. The benchmark dataset reports the results

from 29 trackers. Here, we compare our tracker “RNN” with
the top 6 trackers in the benchmark: ASLA [1], CXT [38],
SCM [44], Struck [20], TLD [42] and VTS [43]. In addition,
we also compare our tracker with 3 recent state-of-the-art
trackers: KCF [39], MEEM [40] and TGPR [29], which have
reported their results on the benchmark.

The benchmark uses two measurements: i) Precision vs.
Location error threshold, the percentage of the frames in which
distances between tracking results and ground truth are below
certain thresholds. ii) Success rate vs. Overlap threshold, the
percentage of the frames in which overlapping percentages of
tracking results against ground truth are higher than certain
thresholds. We rank different trackers according to location
error thresholding at 20 pixels for precision and Area Under
Curve (AUC) for success rate. In addition, we use the one-pass
evaluation (OPE) setting in the benchmark.

Quantitative results. The precision plot and the success
plot of tracking results from the top 10 trackers on all
sequences of the benchmark [8] are presented in Figure 3.
We can find that our tracker outperforms the baseline ASLA
[1] in terms of both precision and success rate with large
margins. We owe this significant improvement to our learned
hierarchical features using tree structure based RNN which
successfully encodes spatial information over local patches
of target objects. Also, we find that our tracker using RNN
features can achieve comparable performance against the state-
of-the-art trackers.

To further evaluate tracking performance, in Table I and
Table II, we present the comparison results from the top 10
trackers in terms of 11 attributes mentioned in the benchmark
[8]. We can find that our tracker using learned RNN features
can consistently improve the baseline ASLA [1] in terms of
handling variational tracking challenges. Also, we can observe
that our tracker achieves comparable performance against the
state-of-the-art trackers in all attributes.

To investigate the effects of the numbers of random trees
used in our RNN model, we present in Figure 4 the comparison
results from different variants of our tracker in terms of both
precision and success plots. We can find that increasing the
number of random trees can significantly enhance tracking per-
formance. It is because that learned hierarchical features based
on more tree structures can encode more spatial information
over local patches of target objects.

Qualitative results. We present some qualitative results
from MEEM [40], TGPR [29], KCF [39], Struck [20] and
our tracker using RNN features on 10 sequences (car4,
soccer, ironman, singer1, jogging-1, motorRolling, walking2,
freeman4, carScale, tiger1) in Figure 5, from which we can
observe that our tracker can handle a large variety of tracking
challenges, e.g. scale variation, occlusion, motion blur, illumi-
nation variation and in-plane rotation. In particular, our tracker
can achieve very promising performance in handling scale
variation (car4, singer1, walking2, carScale). It is because that:
i) the baseline tracker can generate candidates with different
scales; ii) our learned hierarchical features encode spatial
information over local patches of target regions; iii) RNN
features are learned to discriminate target from background.
The later two factors further enhance the first factor for



6

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

ci
si

on
Precision plots of OPE

 

 

MEEM [0.840]
RNN [0.798]
TGPR [0.766]
KCF [0.740]
Struck [0.656]
SCM [0.649]
TLD [0.608]
VTS [0.575]
CXT [0.575]
ASLA [0.532]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

 

 

RNN [0.606]
MEEM [0.572]
TGPR [0.529]
KCF [0.514]
SCM [0.499]
Struck [0.474]
TLD [0.437]
ASLA [0.434]
CXT [0.426]
VTS [0.416]

Fig. 3: Precision and success plots of the tracking results from the top 10 trackers on all sequences of the benchmark [8].

TABLE I: Average precision scores on different attributes: background clutter (BC), deformation (DEF), fast motion (FM), in-
plane rotation (IPR), illumination variation (IV), low resolution (LR), motion blur (MB), occlusion (OCC), out-of-plane rotation
(OPR), out-of-view (OV) and scale variation (SV). The best and the second best results are in red and blue respectively.

ASLA[1] CXT[38] KCF[39] MEEM[40] SCM[41] Struck[20] TGPR[29] TLD[42] VTS[43] RNN

BC 0.496 0.443 0.753 0.808 0.578 0.585 0.761 0.428 0.578 0.779
DEF 0.445 0.422 0.740 0.859 0.586 0.521 0.768 0.512 0.487 0.762
FM 0.253 0.515 0.602 0.757 0.333 0.604 0.575 0.551 0.353 0.624
IPR 0.511 0.610 0.725 0.809 0.597 0.617 0.706 0.584 0.579 0.766
IV 0.517 0.501 0.728 0.778 0.594 0.558 0.687 0.537 0.573 0.726
LR 0.156 0.371 0.381 0.494 0.305 0.545 0.539 0.349 0.187 0.660
MB 0.278 0.509 0.650 0.740 0.339 0.551 0.578 0.518 0.375 0.623

OCC 0.460 0.491 0.749 0.814 0.640 0.564 0.708 0.563 0.534 0.743
OPR 0.518 0.574 0.729 0.853 0.618 0.597 0.741 0.596 0.604 0.780
OV 0.333 0.510 0.650 0.730 0.429 0.539 0.495 0.576 0.455 0.556
SV 0.552 0.550 0.679 0.808 0.672 0.639 0.703 0.606 0.582 0.750

Average 0.532 0.575 0.740 0.840 0.649 0.656 0.766 0.608 0.575 0.798

TABLE II: Average success rates on different attributes: background clutter (BC), deformation (DEF), fast motion (FM), in-
plane rotation (IPR), illumination variation (IV), low resolution (LR), motion blur (MB), occlusion (OCC), out-of-plane rotation
(OPR), out-of-view (OV) and scale variation (SV). The best and the second best results are in red and blue respectively.

ASLA[1] CXT[38] KCF[39] MEEM[40] SCM[41] Struck[20] TGPR[29] TLD[42] VTS[43] RNN

BC 0.408 0.338 0.535 0.578 0.450 0.458 0.543 0.345 0.428 0.587
DEF 0.372 0.324 0.534 0.582 0.448 0.393 0.556 0.378 0.368 0.570
FM 0.247 0.388 0.459 0.568 0.296 0.462 0.441 0.417 0.300 0.482
IPR 0.425 0.452 0.497 0.535 0.458 0.444 0.487 0.416 0.416 0.576
IV 0.429 0.368 0.493 0.548 0.473 0.428 0.486 0.399 0.429 0.563
LR 0.157 0.312 0.312 0.367 0.279 0.372 0.351 0.309 0.168 0.520
MB 0.258 0.369 0.497 0.565 0.298 0.433 0.440 0.404 0.304 0.485

OCC 0.376 0.372 0.514 0.563 0.487 0.413 0.494 0.402 0.398 0.565
OPR 0.422 0.418 0.495 0.569 0.470 0.432 0.507 0.420 0.425 0.579
OV 0.312 0.427 0.550 0.597 0.361 0.459 0.431 0.457 0.443 0.477
SV 0.452 0.389 0.427 0.510 0.518 0.425 0.443 0.421 0.400 0.573

Average 0.434 0.426 0.514 0.572 0.499 0.474 0.529 0.437 0.416 0.606



7

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

ci
si

on
Precision plots of OPE

 

 

RNN_tree10 [0.798]
RNN_tree05 [0.761]
RNN_tree01 [0.734]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

 

 

RNN_tree10 [0.606]
RNN_tree05 [0.589]
RNN_tree01 [0.571]

Fig. 4: Precision and success plots of the tracking results from different variants of our tracker on all sequences of the benchmark
[8].

Fig. 5: Qualitative results comparing our tracker (red) with the other 4 state-of-the-art trackers: MEEM [40] (Green), TGPR
[29] (dark blue), KCF [39] (orange), Struck [20] (light blue) on 10 sequences (car4, soccer, ironman, singer1, jogging-1,
motorRolling, walking2, freeman4, carScale, tiger1).

handling scale changes. As a result, the bounding boxes of
our tracking results can be accurately fit to target regions.

VII. CONCLUSIONS

In this paper, we propose to learn hierarchical features for
visual object tracking by using tree structure based RNN which
can encode spatial information over local patches of target ob-
jects. For tree structures, we use a bottom-up greedy searching
strategy to generate random trees. Given a test sequence, we
learn RNN parameters to discriminate target from background
in the first frame and then fix them for extracting RNN features
from candidate regions in the subsequent frames. With learned
RNN parameters, we create two dictionaries regarding target
regions and corresponding local patches based on learned
RNN features respectively from top and leaf nodes of multiple
random trees in the first 10 frames. In each of the subsequent
frames, we conduct sparse dictionary coding on all candidate
regions to find the optimal candidate as the new target location
of the current frame. Additionally, we online update two

dictionaries to handle target appearance changes. Experimental
results demonstrate that our feature learning algorithm can
significantly improve tracking performance.

REFERENCES

[1] X. Jia, H. Lu, and M. Yang, “Visual tracking via adaptive structural local
sparse appearance model,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2012, pp. 1822–1829.

[2] N. Wang and D. Yeung, “Learning a deep compact image representation
for visual tracking,” in Advances in Neural Information Processing
Systems, 2013, pp. 809–817.

[3] H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature
representations by convolutional neural networks for visual tracking,” in
British Machine Vision Conference, 2014.

[4] L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang, “Video track-
ing using learned hierarchical features,” IEEE Transactions on Image
Processing, vol. 24, no. 4, pp. 1424–1435, 2015.

[5] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in
International Conference on Machine Learning, 2015, pp. 597–606.

[6] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully
convolutional networks,” in IEEE International Conference on Computer
Vision, 2015.



8

[7] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convo-
lutional features for visual tracking,” in IEEE International Conference
on Computer Vision, 2015.

[8] Y. Wu, J. Lim, and M. Yang, “Online object tracking: A benchmark,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 2411–2418.

[9] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, and M. Shah, “Visual tracking: An experimental survey,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, 2014.

[10] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,” Inter-
national Journal of Computer Vision, vol. 26, no. 1, pp. 63–84, 1998.

[11] D. A. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning
for robust visual tracking,” International Journal of Computer Vision,
vol. 77, no. 1-3, pp. 125–141, 2008.

[12] X. Mei and H. Ling, “Robust visual tracking using `1 minimization,”
in IEEE International Conference on Computer Vision, 2009, pp. 1436–
1443.

[13] H. Li, C. Shen, and Q. Shi, “Real-time visual tracking using compressive
sensing,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011, pp. 1305–1312.

[14] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust L1 tracker
using accelerated proximal gradient approach,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 1830–1837.

[15] S. J. McKenna, Y. Raja, and S. Gong, “Tracking colour objects using
adaptive mixture models,” Image Vision Comput., vol. 17, no. 3-4, pp.
225–231, 1999.

[16] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–575,
2003.

[17] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2010, pp.
1269–1276.

[18] S. Avidan, “Support vector tracking,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 8, pp. 1064–1072, 2004.

[19] F. Tang, S. Brennan, Q. Zhao, and H. Tao, “Co-tracking using semi-
supervised support vector machines,” in IEEE International Conference
on Computer Vision, 2007, pp. 1–8.

[20] S. Hare, A. Saffari, and P. H. S. Torr, “Struck: Structured output tracking
with kernels,” in IEEE International Conference on Computer Vision,
2011, pp. 263–270.

[21] Y. Bai and M. Tang, “Robust tracking via weakly supervised ranking
SVM,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2012, pp. 1854–1861.

[22] H. Grabner and H. Bischof, “On-line boosting and vision,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2006, pp. 260–267.

[23] R. Liu, J. Cheng, and H. Lu, “A robust boosting tracker with mini-
mum error bound in a co-training framework,” in IEEE International
Conference on Computer Vision, 2009, pp. 1459–1466.

[24] B. Zeisl, C. Leistner, A. Saffari, and H. Bischof, “On-line semi-
supervised multiple-instance boosting,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2010, p. 1879.

[25] X. Zhang, W. Hu, S. J. Maybank, and X. Li, “Graph based discriminative
learning for robust and efficient object tracking,” in IEEE International
Conference on Computer Vision, 2007, pp. 1–8.

[26] B. Babenko, M. Yang, and S. J. Belongie, “Visual tracking with online
multiple instance learning,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2009, pp. 983–990.

[27] X. Wang, G. Hua, and T. X. Han, “Discriminative tracking by metric
learning,” in European Conference on Computer Vision, 2010, pp. 200–
214.

[28] N. Jiang, W. Liu, and Y. Wu, “Order determination and sparsity-
regularized metric learning adaptive visual tracking,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012, pp. 1956–1963.

[29] J. Gao, H. Ling, W. Hu, and J. Xing, “Transfer learning based visual
tracking with gaussian processes regression,” in European Conference
on Computer Vision, 2014, pp. 188–203.

[30] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,
“Semi-supervised recursive autoencoders for predicting sentiment distri-
butions,” in Proceedings of Conference on Empirical Methods in Natural
Language Processing, 2011, pp. 151–161.

[31] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic composi-
tionality through recursive matrix-vector spaces,” in Proceedings of Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, 2012, pp. 1201–1211.

[32] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning,
“Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection,” in Advances in Neural Information Processing Systems, 2011,
pp. 801–809.

[33] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks,” in Pro-
ceedings of International Conference on Machine Learning, 2011, pp.
129–136.

[34] R. Socher, B. Huval, B. P. Bath, C. D. Manning, and A. Y. Ng,
“Convolutional-recursive deep learning for 3d object classification,” in
Advances in Neural Information Processing Systems, 2012, pp. 665–673.

[35] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in IEEE International
Conference on Neural Networks, vol. 1, 1996, pp. 347–352.

[36] J. Nocedal, “Updating quasi-newton matrices with limited storage,”
Mathematics of Computation, vol. 35, no. 151, pp. 773–782, 1980.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1106–1114.

[38] T. B. Dinh, N. Vo, and G. G. Medioni, “Context tracker: Exploring
supporters and distracters in unconstrained environments,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2011, pp.
1177–1184.

[39] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, 2015.

[40] J. Zhang, S. Ma, and S. Sclaroff, “MEEM: robust tracking via mul-
tiple experts using entropy minimization,” in European Conference on
Computer Vision, 2014, pp. 188–203.

[41] W. Zhong, H. Lu, and M. Yang, “Robust object tracking via sparsity-
based collaborative model,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 1838–1845.

[42] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N learning: Bootstrapping
binary classifiers by structural constraints,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 49–56.

[43] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in IEEE
International Conference on Computer Vision, 2011, pp. 1195–1202.

[44] W. Zhong, H. Lu, and M. Yang, “Robust object tracking via sparse col-
laborative appearance model,” IEEE Transactions on Image Processing,
vol. 23, no. 5, pp. 2356–2368, 2014.


	I Introduction
	II Related Work
	III Learning Hierarchical Features Using RNN
	III-A Overview of RNN
	III-B Extracting Features Using RNN
	III-C Generating Random Trees
	III-D Discriminative Learning of RNN Parameters

	IV Our Tracking System
	V Discussion
	VI Experiments
	VII Conclusions
	References

