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ABSTRACT

Realistic image synthesis is to generate an image that is per-
ceptually indistinguishable from an actual image. Generating
realistic looking images with large variations (e.g., large spa-
tial deformations and large pose change), however, is very
challenging. Handing large variations as well as preserving
appearance needs to be taken into account in the realistic
looking image generation. In this paper, we propose a novel
realistic looking image synthesis method, especially in large
change demands. To do that, we devise generative guiding
blocks. The proposed generative guiding block includes re-
alistic appearance preserving discriminator and naturalistic
variation transforming discriminator. By taking the proposed
generative guiding blocks into generative model, the latent
features at the layer of generative model are enhanced to
synthesize both realistic looking- and target variation- image.
With qualitative and quantitative evaluation in experiments,
we demonstrated the effectiveness of the proposed generative
guiding blocks, compared to the state-of-the-arts.

Index Terms— Deep learning, adversarial learning, vari-
ation image synthesis, and feature enhancement

1. INTRODUCTION

Generating realistic-looking images draws great attention
and considered as an important task in generative models for
image synthesis. Recently, deep learning-based generative
models have achieved remarkable success in various syn-
thesis tasks such as face, human, and scene generation. In
data acquisition, it is time consuming and costly to collect or
capture the images with desired variations (e.g., pose, illumi-
nation, facial expression, and viewpoint). Generative models
that can automatically synthesize images with the desired
variations are needed in practice.

For generating realistic-looking images of objects, it is re-
quired to understand both their appearance and variants. The
object has inherent appearance properties characterized by
color and texture such as hair color and fashion style. On the
other hand, there are variants including the shape and geomet-
rical layout of the object. One of the most challenging points
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in the image generation is to preserve the appearance proper-
ties of input image (e.g., color, texture, the identity of person)
while performing spatial deformation according to variants
(e.g., pose variation and illumination variation).

For this task, so far, various methods have been proposed
based on Variational Auto-Encoders (VAEs) [1], Generative
Adversarial Networks (GANs) [2] and Autoregressive mod-
els (ARMs) (e.g., PixelRNN [3]) [4–12]. Recently, a wide
range of methods including conditional GANs [13] or con-
ditional VAEs [14] have been proposed for synthesizing the
images whose appearances depend on a given conditioning
variable (e.g., label). However, most of them could not deal
with the large variations (e.g., large spatial deformation [15])
between the input and the target image while preserving the
appearance of a given input. Due to the high dimensionality
of images and the complex configuration of image contents,
it is difficult for a complete end-to-end framework to generate
both the correct target variation and the detailed appearance
simultaneously [16–19].

In this paper, we focus on realistic appearance and natu-
ralistic variation in target image generation. The generative
features are enhanced with appearance preservation and vari-
ant transformation. Our objective is to propose new gener-
ation method that addresses two problems, which are realis-
tic appearance and naturalistic large-variation. To cope with
the problems, we propose a novel generative guiding blocks
(GGBs). Each generative guiding block consists of realistic
appearance preserving discriminator (RAPD) and naturalis-
tic variation transforming discriminator (NVTD). In the pro-
posed RAPD, to preserve the object appearance of input im-
age (e.g., identity of person), the overall image distribution
is considered by determining whether the appearance is pre-
served in the target image or not. Simultaneously, in the pro-
posed NVTD, to generate the target image with large varia-
tion, the change information of deformation is considered by
focusing on the variation between the input and the generated
target image. We hierarchically integrate the proposed GGBs
with the decoding module of the generator to enhance gener-
ative feature in multiple resolution levels. The proposed gen-
erative model with GGBs enables to synthesize the realistic-
looking image robustly even with large variations while main-
taining naturalistic variants. Experimental results showed the
effectiveness of the proposed GGBs.
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Fig. 1. Overall Architecture of the proposed generative model with generative guiding blocks (GGBs). Note GBBs is hierar-
chically integrated in decoding modules of generator in multiple resolution levels.

The rest of this paper is organized as follows. In section
2, we describe the proposed generative model with GGBs.
In section 3, the experimental results are presented. Finally,
conclusion is drawn in section 4.

2. PROPOSED METHOD

Fig. 1 shows the proposed generative model with generative
guiding blocks (GGBs). The generator synthesizes the fake
image having the appearance of the input image and the target
variants. The discriminator determines whether the fake im-
age is real or not. As shown in Fig. 1, the generative guiding
blocks (GGBs) are attached to multi-level generative features
of multiple layers in the decoder of generator. The GGBs de-
termine whether the generated multi-resolution images have
realistic appearance (operated by RAPD in GGB) and natural-
istic variation (operated by NVTD in GGB). Variant transfor-
mation is performed hierarchically in a multi-resolution man-
ner so that the proposed generator can process large variant
demand. In the following subsections, we describe in detail
about the generator, discriminator and GGBs.

2.1. Generative model with discriminator

Let x ∈ IR256×256×3 denote the input image and y ∈
IR256×256×3 denote the ground-truth target image. c de-
notes the target variation and x̂ ∈ IR256×256×3 (i.e. G(x, c))
denotes the generated image. Let gn denote n-th generative
feature. Let G denote the generator, D denote the discrim-
inator and Mc ∈ IR256×256×3 denote the label map which
is encoded from c. By encoding c, abundant condition in-
formation of the desired variation is provided to the G. In

this paper, a U-Net-like structure is employed as G [20, 21].
The encoder and decoder of G consist of 7 convolution layers
and deconvolution layers, respectively (i.e. N=7) with 4 × 4
kernel and stride of 2. D consists of 5 convolution layers with
4× 4 kernel and stride of 2.

With an adversarial learning [2], D determines whether
the x̂ is a realistic-looking or not, comparing with y. The
objective functions of D can be written as

LD =− Ey∼py [log(D(y))]

− Ex∼px [log(1−D(G(x, c)))].
(1)

On the other hand, G tries to fool D by generating the
realistic image. To that end, the loss of the generator is com-
posed of two terms, which are the realism loss, `real, and the
reconstruction loss, `rec. The realism loss can be written as

`real = −Ex∼px [log(D(G(x, c)))] (2)

The reconstruction loss between the ground-truth target
image and the generated image at n-th level, `nrec , in the de-
coder can be written as

`nrec = Ex∼px [‖yn − x̂n‖1], (3)

where x̂n indicates a generated image from gn and yn indi-
cates an image downsized to the same resolution of x̂n from
y (as shown in Fig. 2).

Finally, the total loss function of the proposed generator,
G, can be defined as a combination of the realism loss and the
reconstruction loss.

LG = λreal`real + `Nrec, (4)

where λreal is a weight parameter to control the balance be-
tween `real and `Nrec.
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Fig. 2. The architecture of the proposed n-th GGB.

2.2. Generative Guiding Block for realistic appearance
and naturalistic variation

Fig. 2 shows the architecture of the proposed n-th GGB,
which consists of a realistic appearance preserving discrim-
inator (RAPD), DRAPD, and a naturalistic variation trans-
forming discriminator (NVTD), DNV TD. The GGBs are at-
tached on the multi-level generative features of multiple lay-
ers in the decoder as shown in Fig. 1. Let xn denote an image
downsized to the same resolution of x̂n from x. Let f(·) de-
note the feature encoder. In this paper, DRAPD and DNV TD

consist of 3 convolution layers. The feature encoder consists
of 2 convolution layers with 4×4 kernel and stride of 2.

First, to deal with feature information of xn, x̂n and yn,
the images are encoded to the latent feature, f(xn), f(x̂n)
and f(yn). After that, DRAPD distinguishes whether the
encoded features, f(x̂n) and f(yn), are realistic or not. As
shown in Fig. 2, DNV TD distinguishes whether the residual
information of encoded features (i.e., dn

real = f(xn)−f(yn)
and dn

fake = f(xn) − f(x̂n)) is realistic or not. The rea-
son that the input of DNV TD is residual information is to
make DNV TD focus on only the target variation. G tries to
fool DRAPD, so that x̂n mimics the data distribution of yn.
Through this process, gn is enhanced for generating appear-
ance realistic image. Also, G tries to fool DNV TD, so that
dn
fake tries to follow dn

real. g
n is enhanced for generating the

image with naturalistic variation as well.
The discriminators in GGB, DRAPD and DNV TD, are

trained by adversarial learning with G. Therefore, we adopt
generative adversarial loss. First, the objective function of
DRAPD is defined as

Ln
DRAPD

=− Ey∼py [log(Dn
RAPD(f(yn)))]

− Ex∼px [log(1−Dn
RAPD(f(x̂n)))],

(5)

whereDn
RAPD indicatesDRAPD in n-th GGB. Similarly, the

Table 1. Quantitative comparison with the state-of-the-art
methods on DeepFashion dataset.

Model SSIM IS

Disentangled [17] 0.614 3.23
VariGAN [18] 0.620 3.03

PG2 [16] 0.762 3.09
DPT [19] 0.769 3.17

Ours 0.799 3.26

Table 2. Effectiveness of using both RAPD/NVTD and mul-
tiple GGBs

Model SSIM IS

Ours w/o GGBs 0.705 2.81
Ours w/o RAPD 0.709 2.72
Ours w/o NVTD 0.714 2.73
Ours with 1 GGB 0.780 3.14
Ours with 2 GGBs 0.793 3.15

Ours 0.799 3.26

objective function of DNV TD is defined as

Ln
DNV TD

= −Ex∼px,y∼py [log(Dn
NV TD(dn

real))]

− Ex∼px [log(1−Dn
NV TD(dn

fake))],
(6)

where Dn
NV TD indicates DNV TD in n-th GGB.

Dn
RAPD and Dn

NV TD are trained to minimize Ln
DRAPD

and Ln
DNV TD

, respectively. Contrary, G with GGBs is trained
to minimize `nRAPD and `nNV TD for learning to fool Dn

RAPD

and Dn
NV TD. These objective functions can be written as

`nRAPD = −Ex∼px [log(Dn
RAPD(f(x̂n)))], (7)

`nNV TD = −Ex∼px [log(Dn
NV TD(dn

fake))]. (8)

In particular, to preserve the appearance information, we
adopt the L1 norm as our reconstruction loss, Eq. 3. Finally,
the objective function of G with our GGBs is defined as

LGGB =
N−1∑
n=1

λnRAPD`
n
RAPD +λnNV TD`

n
NV TD + `nrec, (9)

where Σ is used for weighted sum of multi-level GGB losses.

2.3. Training strategy

Every iteration, x and c are given to G. Then, G generates
x̂. In the D, LD is calculated with x̂ and y (see Eq.1). In
the n-th GGB, Ln

DRAPD
and Ln

DNV TD
are calculated with xn,

yn and x̂n (see Eq.5 and 6). After that, the weights of D
are updated to minimize LD. Also, the weights of n-th GGB
are updated to minimize Ln

DRAPD
and Ln

DNV TD
(n=1,2,...,N -

1). The weights of G except for gN are firstly updated to
minimize LGGB (see Eq. 9). Finally, the weights of G are
updated to minimize LG (see Eq. 4). Until the weights are
optimized, this process is repeated.
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Fig. 3. Qualitative comparison on DeepFashion dataset between the results obtained by our approach and PG2 [16].
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Fig. 4. Generated human pose images obtained by our model on DeepFashion dataset when it is trained with (a) only 6-th GGB,
(b) 5-th and 6-th GGBs, (c) 4-th, 5-th and 6-th GGBs.

3. EXPERIMENTS AND RESULTS

3.1. Datasets

For verifying the effectiveness of the proposed generative
model with GGBs, we used public datasets: DeepFash-
ion [22]. This dataset consists of 52,712 in-shop clothes
images with 256×256 resolution. As similar to [16], for the
training set, we have 146,680 pairs. Each pair is composed
of two images of the same identity but different poses. For
the test set, we randomly selected 12,800 pairs from the test
set. To use the human pose landmark of DeepFashion data
as the target variation, we applied a state-of-the-art pose
estimation [23], as in [16].

3.2. Implementation details

We used Adam optimizer [24] with β1 = 0.5, β2 = 0.999, the
batch size of 8, and learning rate of 0.0002 to train proposed
models. In our experiment, we attached three GGBs on the
generative features with 32 × 32, 64 × 64 and 128 × 128
resolutions (i.e. g4, g5 and g6). We empirically set λreal =
0.02 and λnRAPD = λnNV TD = 0.01.

3.3. Performance evaluation

Fig. 3 shows comparison between generated images by our
model and those by the state-of-the-art model, PG2 [16]. To
obtain the results of PG2, we used pretrained weight provided
by the author of PG2. As shown in Fig. 3, in the results of
PG2, hair and clothes were blurred a lot. Thus the appear-
ance information was not preserved well. On the other hand,
the appearances were preserved well in ours. Fig. 4 shows

the effectiveness of refining multi-level features using GGBs.
’1 GGB’ indicates the generative model with only 6-th GGB.
’2 GGBs’ indicates the generative model with 5-th and 6-th
GGBs. ’3 GGBs’ indicates the generative model with 4-th, 5-
th and 6-th GGBs, same as proposed model. The more GGBs
were used in generative model training, the clearer the im-
ages and the better the appearance preserved. Table 1 and 2
show the quantitative results of state-of-the-art models [16–
19] and the proposed model by measuring Structural Similar-
ity (SSIM) [25] and Inception scores (IS) [7]. As seen in Ta-
ble 1, the proposed method outperformed the state-of-the-art
method. In table 2, ’w/o GGBs’ indicates training generative
model without any GGB. ’w/o RAPD’ and ’w/o NVTD’ in-
dicate that there are only NVTD and RAPD in GGB, respec-
tively. As seen in Table 2, the proposed model (i.e. 3 GGBs
are used, RAPD and NVTD in GGB) provided the highest
performance.

4. CONCLUSION

In this paper, we proposed a novel Generative Guiding Block
for synthesizing realistic looking images with the large vari-
ations while preserving the appearance properties. The pro-
posed GGB consisted of two critic networks which were
RAPD for maintaining the appearance characteristic and
NVTD for applying the target variants. By hierarchically in-
tegrating the proposed GGBs with the generator, the proposed
GGBs could enhance the generative features in the decoder
from coarse to fine. The experimental results showed that the
proposed method outperformed the state-of-the-art methods.
Also, the effectiveness of components of GGB (i.e. RAPD
and NVTD) and hierarchical multi-level features were shown.



5. REFERENCES

[1] D. P. Kingma and M. Welling, “Auto-encoding varia-
tional bayes.,” CoRR, vol. abs/1312.6114, 2013.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial nets,” in Advances in Neu-
ral Information Processing Systems 27, pp. 2672–2680.
Curran Associates, Inc., 2014.

[3] A. Van Den Oord, N. Kalchbrenner, and
K. Kavukcuoglu, “Pixel recurrent neural networks,” in
ICML, 2016, pp. 1747–1756.

[4] R. A. Yeh∗, C. Chen∗, T. Y. Lim, A. G. Schwing,
M. HasegawaJohnson, and M. N. Do, “Semantic im-
age inpainting with deep generative models,” in CVPR,
2017, ∗ equal contribution.

[5] Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shecht-
man, and D. Samaras, “Neural face editing with intrinsic
image disentangling,” in CVPR. IEEE, 2017, pp. –.
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