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ABSTRACT

The problem of objectively measuring perceptual quality
of omnidirectional visual content arises in many immersive
imaging applications and particularly in compression. The
interactive nature of this type of content limits the perfor-
mance of earlier methods designed for static images or for
video with a predefined dynamic. The non-deterministic im-
pact must be addressed using statistical approach. One of
the ways to describe, analyze and predict viewer interactions
in omnidirectional imaging is through estimation of visual
attention. We propose an objective metric to measure per-
ceptual quality of omnidirectional visual content considering
visual attention information.

Index Terms— omnidirectional imaging, virtual reality,
visual attention, perceptual quality

1. INTRODUCTION

Omnidirectional visual content is a particular form of im-
mersive multimedia which extends conventional image and
video sensations to a three-dimensional space by provid-
ing full-spherical coverage of field of view and allowing
change-of-sight interactions. This type of content is typically
consumed using virtual reality (VR) head-mounted displays
(HMD), hand-held devices, and, less frequently, conven-
tional displays of personal computers. Viewers perform
interactions by moving their heads, displacing and rotating
an accelerometer-equipped device or by means of direct con-
trollers such as computer mice, track-pads and touch-screens.

Interactivity is a property of omnidirectional visual con-
tent as well as other immersive media which distinguishes
them drastically from conventional images and video. It intro-
duces an additional non-deterministic component among the
factors influencing perception of this type of content by hu-
mans. At any given moment a viewer sees only a subset of the
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entire omnidirectional image or video frame which is called a
viewport. Thus, there may exist a case when an observer does
not explore every part of an image. Hence, particular regions
acquire more significance and provide higher impact on per-
ceived visual quality, whilst other regions contribute less to
it. One way to take this factor into consideration is to collect
statistical data of user interactions in order to estimate visual
attention or saliency.

Current research on visual attention in omnidirectional
images and virtual reality is mainly represented by two trends:
one concerns obtaining visual attention information from ex-
perimental data involving human viewers, whilst another con-
centrates on prediction of salient regions using algorithmic
approaches. The problem of obtaining visual attention em-
pirically is investigated by researchers in [1-6]. These works
provide analysis of eye and head movements during consump-
tion of VR content and propose several methods to process
raw experimental data in order to obtain saliency maps. Pre-
diction of salient regions using the algorithmic approach is
studied in [7-10] and advocate mostly adaptation of earlier
conventional saliency prediction methods described in [11,
12]. Deep learning approaches to predict visual saliency in
omnidirectional visual content are presented in [13—15].

State-of-the-art research on perceptual visual quality as-
sessment of omnidirectional content mainly focuses on adap-
tation of conventional full-reference objective metrics in
order to cope with geometrical distortions and spatial entropy
redistribution introduced by different representations of such
content. A review along with benchmarking results of re-
cently proposed objective quality metrics for omnidirectional
visual content is provided by authors in [16, 17]. Among
the proposed metrics methodology varies from applying
forward-and-backward geometrical mappings as in [18] to
different schemes of weighting during pixel-wise compari-
son as in [19-21]. Croci et al. propose in [22] a framework
for perceptual visual quality control in stereoscopic omnidi-
rectional imaging. Their method considers empirical visual
attention data to define significance of regions.

In this paper, we propose yet another approach to incor-
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Fig. 2. Subjective mean opinion scores (MOS) with 95% confidence intervals. The area filled with transparent purple color

depicts the 95% confidence interval of the hidden reference.

porate visual attention data into a full-reference objective per-
ceptual visual quality measurement.

2. VISUAL ATTENTION WEIGHTED METRIC

In this section, we propose an objective perceptual visual
quality metric which takes into account ground-truth viewer’s
visual attention information in order to make image quality
assessment selective with respect to regions of interest.

As a base for our method we choose to use Peak Signal to
Noise Ratio (PSNR) metric because it is widely accepted, its
implementation is simple, and its performance is satisfactory
to test our hypothesis. We define a ground-truth image as
I(i,j), where i = 0,1,...,H,j5 = 0,1,...,W, with W and
H being dimensions of the image. The impaired image is
defined as (4, j). Thus, PSNR is described by the following
equation:

MAX?

PSNR = VSE

where

SIS (16.0) ~ 16.9)
- H+«W

and M A X7 is the maximum possible value of pixel intensity
of the assessed image, e.g. for an 8-bit image it equals 255.
Given that sufficient amount of empirical data of head
movements is available for an assessed omnidirectional im-
age, one can obtain a visual saliency map using a method de-
scribed in [1].
Hence, the saliency map can be defined as:

MSE

hi; €10,1,i=0,1,...,H,j=0,1,..,W

where each pixel of h; ; provides a visual attention value for
each corresponding pixel of I (¢,7). The saliency map h; ;
can be obtained independently for different degradation lev-
els of impaired images. This issue is further addressed in Sec-
tion 3.3.

Visual saliency map is used to compute a saliency-
weighted mean square error M SFEy 4 which contributes
to PSNR equation as a denominator.
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Therefore, a Visual Attention PSNR (VA-PSNR) is de-
fined as:

MSEy 4 =

MAX?
MSEy 4

VA-PSNR allows comparison of two omnidirectional im-
ages regardless of the projection (equirectangular, cubic, etc.)
they are represented in, provided that both are represented in
the same.

The source code and data are publicly available on-line at:
https://github.com/mmspg/saliencymetric360

PSNRy 4 =

3. SUBJECTIVE EXPERIMENTS

Two independent content viewing sessions were conducted.
Participants were divided in two disjoint groups: one was
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Fig. 3. Visual attention heatmaps obtained from experimental data.

asked to evaluate omnidirectional images according to vi-
sual quality, whilst another performed free exploration with
a dummy task to assess aesthetic value of the pictures. It is
interesting to observe that although other datasets [23] have
been proposed, they are not task dependent.

3.1. Dataset and Equipment

Four still images extracted from test sequences of MPEG om-
nidirectional video dataset were selected for the experiments
as depicted in Figure 1. The contents were compressed using
three different codecs, namely JPEG, JPEG 2000, and HEVC
Intra-frame. The software used was the same as in [16] with
the quality parameters specified in Table 2. Original images
were downscaled to 5760 <2880 pixels before compression in
order to comply with technical requirements of the display.
Experiments were conducted with the help of a testbed
for subjective evaluation of omnidirectional content proposed
in [17] which is publicly available for downloading'. Par-

Uhttps://github.com/mmspg/testbed360-android

ticipants were observing stimuli using a head-mount? with a
mobile device acting as a screen. Galaxy S7 Edge SM-G935F
was used. The resolution of the device is 2560 1440 pixels.
During the experiments, subjects were sitting on a rotating
chair. All subjects passed color vision and visual acuity tests.

3.2. Evaluation and Exploration

During an evaluation experiment subjects were assessing om-
nidirectional images following the methodology called Abso-
lut Category Rating with Hidden Reference (ACR-HR). They
were asked to rate stimuli on the five-level scale 5 - Excellent,
4 - Good, 3 - Fair, 2 - Poor, and 1 - Bad. 19 subjects partici-
pated in the evaluation session, among which 9 were females,
with an overall median age of 24.5. Results of subjective as-
sessment are presented in Figure 2.

Exactly the same set up as for evaluation was used in
an exploration experiment. However, subjects were asked
to evaluate aesthetic value of the pictures and only uncom-
pressed stimuli were used. Their subjective scores were dis-

2https://mergevr.com
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Fig. 4. Mapping of objective scores to subjective ratings. Grey line depicts linear fitting. Different colors represent different
contents: blue - Train, red - Harbor, cyan - SkateboardTrick, magenta - KiteFlite.

PSNR WS-PSNR [19] VA-PSNR Eval VA-PSNR Expl VA-PSNR Eval- | VA-PSNR Eval-
Refs LowQ
PLCC 0.6959 0.7106 0.7107 0.7074 0.7114 0.7083
SRCC 0.3706 0.4131 0.4131 0.4075 0.4163 0.4080
KRCC 0.2706 0.2976 0.3012 0.2904 0.2976 0.2958

Table 1. Standard performance indexes. Pearson linear correlation coefficient (PLCC), the Spearman rank correlation coeffi-
cient (SRCC), and Kendall rank correlation coefficient (KRCC). Bold text shows the best result per index.

[ Codec [ Harbor [ KiteFlite [ Skateboard..[ Train ]
JPEG 9,53,79,87 4,23,54,73 8,71,87,93 8,65,85,92
JPEG 2000 | 41,44,46,47 | 35,39,42,44 | 44,47,49,51 | 43,46,48,50
HEVC-1 32,27,24,21 | 37,30,26,23 | 29,23,21,18 | 30,24,21,19

VA-PSNR and other metrics were computed for all the stimuli
using each set of saliency maps described in Section 3.3.
Standard performance indexes were calculated (Table 1)

Table 2. Quality "Q” parameters used to encode images.

carded and only head direction tracks were collected. Explo-
ration sessions had 17 participants, of which 10 were females,
with an overall median age of 24.3.

3.3. Visual Attention and Quality

Head direction tracks were collected from both evaluation and
exploration experiments. They were processed according to
the method described in [1] in order to produce saliency maps.
Additionally, raw visual attention data from evaluation ses-
sions were grouped into three categories: all tracks, tracks
from stimuli which have Mean Opinion Scores (MOS) lying
withing the 95% confidence interval of hidden reference, and
with MOS lower then 3.0. The resulting saliency maps are
depicted in Figure 3.

4. VALIDATION AND DISCUSSION

The proposed method is essentially an extension of PSNR.
Thus, it was benchmarked against other PSNR-based metrics.

after applying linear fitting to the data as it depicted in Fig-
ure 4. Notably, VA-PSNR-Refs computed using saliency
maps from high quality evaluation stimuli outperforms VA-
PSNR-Expl, VA-PSNR-Eval, and VA-PSNR-lowQ computed
using maps from exploration sessions, from all evaluation
tracks, and from low quality evaluation stimuli tracks respec-
tively.

The proposed method requires empirical visual saliency
data and it can be applied in post-production of cloud ser-
vices where, after a certain time from the moment of initial
release, sufficient amount of data can be collected and used
a posteriori to estimate quality during re-compression of the
content which can be beneficial for saving bandwidth.

5. CONCLUSION

In this paper, we proposed a new method called VA-PSNR
which estimates perceptual quality of omnidirectional content
considering visual attention. We validated our method against
subjective MOS and benchmarked it against state-of-the-art
objective metrics. VA-PSNR shows better performance when
compared to alternative approaches based on PSNR.
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