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ABSTRACT

In this paper, we propose an approach that spatially lo-
calizes the activities in a video frame where each person can
perform multiple activities at the same time. Our approach
takes the temporal scene context as well as the relations of the
actions of detected persons into account. While the temporal
context is modeled by a temporal recurrent neural network
(RNN), the relations of the actions are modeled by a graph
RNN. Both networks are trained together and the proposed
approach achieves state of the art results on the AVA dataset.

Index Terms— Spatio-temporal action detection, Graph-
RNN

1. INTRODUCTION

With the advent of deep neural networks and the availabil-
ity of large datasets in the last decade, the performance of
recent algorithms for action recognition has improved dras-
tically. Annotating large amount of data, however, is very
expensive. In particular for spatio-temporal action recogni-
tion and localization where multiple actions occur at the same
time, action labels and bounding boxes would be required for
each frame in order to learn a model using full supervision.
The large-scale AVA 2.1 dataset [1] for recognizing and lo-
calizing multiple actions in videos, therefore, provides only
temporally sparse annotations, i.e., the persons and the ac-
tions the people perform are annotated for only one frame per
second. This requires to develop methods that can be trained
with such sparse annotations [1, 2, 3, 4].

While these works take temporal information into ac-
count, they do not model the interactions of the individual
persons. While some actions of different persons are uncor-
related, other actions refer to interactions between persons
like ‘talk to’ and ‘listen to’. There are also actions that are
often performed by several persons at the same time like ‘sit’,
‘stand’, ‘walk’, or ‘play instrument’, but there are also actions
that exclude each other. For instance, if a person ‘drives’ a
car, it is very unlikely that the other persons in the car ‘stand’
or ‘play an instrument’.

In this work, we therefore propose an approach that learns
the relations of actions that occur at the same time and that
can be learned using only sparse annotations. In order to
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Fig. 1. The proposed network jointly captures temporal con-
text and the relations between different persons by a hierar-
chy. Scene RNNs, at the lower level, are used to model the
temporal context of a scene. The Graph-RNN on top of it,
models the relations of the actions of the detected persons.

address the sparseness of the annotations, we do not rely on
tracked bounding boxes, which can be unreliable. Instead, we
propose a hierarchical model that models the temporal scene
context in the lower level and the relations of actions of the
detected persons on the top level as illustrated in Fig. 1. The
temporal scene context is important since the relations of the
actions depend on the scene. For instance, it matters if per-
sons are inside of a moving car or a parking car. We model
the scene context by a recurrent neural network (RNN) that
uses I3D features [5] as input. The RNN models the temporal
context of the entire frames. At the top level of the hierarchy,
we combine the hidden states of the scene context RNN with
I3D features extracted for all detected persons in a frame. To
learn the relations of the actions of all detected persons, we
use a graph recurrent neural network [6, 7, 8]. The proposed
model therefore learns the scene RNN and the graph RNN
together.

We evaluate our approach on the large-scale AVA 2.1
dataset [1] where the approach achieves state-of-the-art re-
sults for action detection of multiple activities.

2. RELATED WORK

A common approach for action recognition and localiza-
tion [9, 10, 11, 12] comprises the detection of the bounding
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Fig. 2. After detecting bounding boxes using Faster RCNN and pooling I3D features for each detected bounding box, the
proposed hierarchical Graph-RNN predicts multiple class labels for each bounding box. In this example, the network detects
two persons and infers the activities ‘sit’, ‘watch (a person)’, and ‘listen to (a person)’ for the red bounding box and ‘stand’,
‘talk to (a person)’, and ‘watch (a person)’ for the green bounding box.

boxes in each frame using object detectors [13, 14]. The
detected bounding boxes are then linked to obtain action
tubes, which are then classified. These approaches, however,
assume that every frame is annotated. Since such dense anno-
tations are very time-consuming, the approaches [15, 3, 16]
deal with sparse annotations where the action labels and lo-
cations are annotated only for a subset of frames, e.g., each
frame per second. These works, however, treat each person
independently although persons tend to interact with each
other.

In the context of group activity analysis [17, 18, 19], the
relations between various individual persons are used to in-
fer the action label of the group as well as the individuals.
The works [17, 18] propose hierarchical models where the in-
dividual actions are modeled at the lower level and the group
activity at the top level. Our task, however, differs from group
activity analysis. While [17, 18, 19] assume that each indi-
vidual is part of a sports team or group and each individual
performs only one action as part of a group, [1] contains mul-
tiple activities per individual and only a subset of the actions
are based on interactions with other individuals.

There are several types of networks that can be applied to
graphs like Graph Convolutional Networks (GCN) [20, 21] or
Graph Recurrent Neural Networks (Graph RNN) [6, 8, 22].
These graph networks have been used in various computer
vision applications such as object detection [23], semantic
segmentation [24], or visual question answering [25]. For
instance, [26] use an attentional GCN to model spatial re-
lations between objects in an image. In our work, we use a
Graph RNN combined with a Scene RNN to model relations
between different persons as well as temporal context.

3. DETECTION OF MULTIPLE ACTIVITIES

As it is defined in the AVA 2.1 dataset [1], the goal of the
approach is to estimate for a frame the bounding boxes of all
persons performing an action and for each bounding box the
action labels. In contrast to other datasets, each bounding box
is annotated by multiple labels. For instance, a person might
‘stand’, ‘carry/hold’ an object, and ‘listen to’ another person

at the same time.

3.1. Features

As illustrated in Fig. 2, the proposed approach consists of two
steps. We first detect the persons in a frame and then we use
the hierarchical graph RNN to infer the action labels for each
detected bounding box. For detecting the bounding boxes, we
use Faster RCNN [27] with a ResNet architecture [28]. The
detector is fined-tuned on the dataset and the detections are
performed in an action class agnostic way.

For the temporal context of a frame t, we extract I3D fea-
tures [5] for t and its neighboring frames. We only consider
the frames t that are annotated in AVA, i.e., one frame per
second, but a single I3D feature is computed over a temporal
context of 33 frames. This means that the temporal receptive
fields of the extracted features for the annotated frames t and
t + 1 slightly overlap. Given l annotated frames before and
after frame t, we get a sequence of L = 2l + 1 I3D features

xt−lc , . . . , xt−1c , xtc, x
t+1
c , . . . , xt+l

c , (1)

which corresponds to a temporal context of approximately L
seconds for AVA.

We also use the detected bounding boxes for each sparsely
sampled frame and use region pooling to extract I3D features
per detected bounding box as in [1]. This gives for each de-
tected bounding box i in frame t another I3D feature vector
that is denoted by xtpi

. We will use these features as input for
the hierarchical graph RNN.

3.2. Hierarchical Graph RNN (HGRNN)

The proposed hierarchical graph RNN as illustrated in Fig. 1
comprises two types of RNNs that are trained together. At
the lower level, the scene RNN, which is described in Sec-
tion 3.2.1, models the temporal scene context. The scene con-
text estimated by the scene RNN is then used as input for the
graph RNN, which models the relations of the actions per-
formed by the detected persons. The graph RNN, which is
described in Section 3.2.2, predicts then for each bounding
box multiple action labels.



3.2.1. Scene RNN

The scene RNN takes all L scene features xtc as well as the
features extracted for each detected person xtpi

in all L frames
as input and predicts a hidden state htc only for frame t. Since
it uses the frames before and after the frame t, we use a bidi-
rectional RNN with GRUs. At this stage, we do not model
any relations between the persons and simply perform max-
pooling over all features xtpi

at each frame.

xtP = maxpooli(x
t
pi
) (2)

xt = xtc ⊕ xtP
htc = biGRU(xt;ht−1c , ht+1

c ). (3)

While xtP denotes the maxpooled person feature for all de-
tected persons in frame t, ⊕ denotes the concatenation of two
vectors.

3.2.2. Graph RNN

Given i detected persons in frame t and the corresponding
features xtpi

as well as the hidden scene representation htc es-
timated by the scene RNN, we now model the relations of the
detected persons to infer the activities for each of them. To
this end, we represent each detected person as a node (vi ∈ V )
of a fully connected graph. This means that we consider all
possible relations how an action of a person effects the actions
of the other persons.

As in [6, 7, 8], we use a graph RNN that iteratively up-
dates the hidden representation for each node vi based on the
intermediate representations of the other nodes. In our case,
the equations for the graph RNN are given by

x(j)vi = maxpoolvi∈V (h
(j−1)
vi )

a(j)vi = xpi
⊕ hc ⊕ x(j)vi

z(j)vi = σ(Uza(j)vi +W zh(j−1)vi )

r(j)vi = σ(Ura(j)vi +W rhvi
(j−1))

s = tanh(Usa(j)vi +W s(h(j−1)vi ◦ r(j)vi ))

h(j)vi = (1− z(j)vi ) ◦ h(j−1)v + z(j)vi ◦ s (4)

where we omitted the frame index t for the ease of reading
and ◦ denotes the Hadamard product. At each iteration j, the
hidden representation for a detected person is given by h(j)vi .
To update the representation, we first maxpool the hidden rep-
resentation over all nodes and concatenate it with the original
person feature xpi

as well as the temporal scene context hc
estimated by the scene RNN, which provides a longer tem-
poral context for the graph RNN than the person features xpi

.
Using a GRU variant, h(j)vi is then updated. After a fix number
of iterations, the estimated hidden representation for each de-
tected person h(j)vi is then fed to a fully connected layer with
sigmoid as activation function to infer all action classes that
are simultaneously performed.

Temporal context l 0 1 3
mAP 19.0% 19.5% 20.9%

Table 1. Impact of the temporal context l.

The entire hierarchical graph RNN consisting of the scene
RNN and the graph RNN is trained jointly using the focal
loss [29] for multi-label classification.

3.3. Implementation Details

The person detector is initialized by a ResNet-101 architec-
ture trained on ImageNet. We finetune the person detector
using Adam optimizer with a variable learning rate starting
from 0.00001 and dropping by 0.5 at regular intervals. This
fine-tuning is done for 100K steps with an effective batch size
of 20. The I3D network is pre-trained on Kinetics [5]. Due to
memory reasons, we reduce the size of the I3D features from
1024 dimensions to 256 dimensions using a fully connected
layer on top of the I3D network and finetune the network on
the dataset. For finetuning, we use Adam optimizer with a
variable learning rate starting from 0.0005 and dropping by
0.5 at various intervals. This fine-tuning is done for 50K steps
with an effective batch size of 50. To make our model robust,
we perform data augmentation using random flips and crops
as in [1].

The hierarchical graph RNN is randomly initialized and
trained from scratch using 1000 steps with a batch size of 50
using Adam optimizer with a constant learning rate of 0.0001.
Furthermore, we use the focal loss [29] with γ = 2. We train
the network on the annotated ground-truth bounding boxes.
For inference, we use the detected bounding boxes and we
perform a simple multiplication of the person detection confi-
dence with the corresponding action prediction score to obtain
the final class predictions for each detection. Finally, class
specific non-maximum suppression is used to remove dupli-
cate detections.

4. EXPERIMENTS

For evaluation, we use the AVA 2.1 dataset [1]. It contains
60 action classes across 235 videos of 15 minutes each for
training and 64 videos of the same length for the validation
set, which we use for evaluation. Sparse annotations in form
of action labels and bounding boxes are provided for a sin-
gle frame every second. The evaluation is performed using
frame-level mean average precision (frame-AP) at IoU thresh-
old 0.5, as described in [1].

Temporal Context: To analyze the effect of increasing
the temporal support, we evaluate various values for the tem-
poral context l (1). Since the frames are sparsely sampled,
l = 3 corresponds to a temporal context of 7 seconds while
l = 0 corresponds to 1 second. For the experiment, we use
only RGB data without optical flow. The results in Tab. 1



Models Graph-RNN Scene-RNN HGRNNs
mAP 19.0% 19.8% 20.9%

Table 2. Comparison of the Scene-RNN and Graph-RNN
with the HGRNN.

Iterations 1 2 3
mAP 20.6% 20.9% 20.8%

Table 3. Impact of the number of iterations.

show that increasing the temporal context increases the accu-
racy. This is due to the fact that certain actions such as ‘open’
and ‘close’ can be better recognized with a larger temporal
receptive field.

Joint Temporal and Interaction Modeling: In Tab. 1,
the accuracy for l = 0 corresponds to the case where only the
Graph-RNN but not the Scene-RNN is used. In Tab. 2, we
also report the accuracy if we use only the Scene-RNN but
not the Graph-RNN. In both cases, the proposed Hierarchical
Graph-RNN, which combines both RNNs in a single model,
achieves a higher accuracy. This shows that both the tem-
poral context as well as the interactions between the persons
contribute to the action detection accuracy.

Number of Iterations: As discussed in Section 3.2.2, the
HGRNN block is iterated. The results in Tab. 3 show that not
many iterations are required. This can be attributed to the fact
that our Graph-RNN already incorporates temporal informa-
tion through the hierarchy and it requires only two iterations
to update the hidden state of each person based on the hidden
states of the other persons. In all other experiments, we use 2
iterations.

Ground Truth (GT) Bounding Boxes: In order to un-
derstand the effect of the accuracy of the person detector on
the action detection accuracy, we used ground truth bounding
boxes during inference. The fine-tuned Faster RCNN person
detector achieves an mAP of 89.09% for detecting the an-
notated bounding boxes on AVA. If ground truth detections
are used instead, the action detection accuracy increases by
5 − 6% as shown in Tab. 4. We also report the results if we
use RGB and optical flow for computing the I3D features.
The additional optical flow increases the accuracy by 2.7%
and 3.9% for detected and GT bounding boxes, respectively.

Comparison with State of the Art: The proposed ap-
proach outperforms the approaches [1, 2] by a large margin.
Most interesting is the comparison to [1] since it uses the
same features but a vanilla I3D head for action detection.
The proposed hierarchical Graph-RNN improves the accu-
racy by 6.4% on RGB data and 8.0% on RGB+Flow data.
This clearly demonstrates the capability of the proposed hi-
erarchical GRNN in comparison to the I3D head [1]. We
also compare our approach with the very recent works [3, 4].
While our approach outperforms [4], [3] achieves a higher ac-
curacy for RGB data. The gain of the accuracy is the use of

Method GT Detected
RGB 25.2% 20.9%

RGB+Flow 29.1% 23.6%

Table 4. Quantitative comparison of the proposed method
with ground truth bounding boxes and detected bounding
boxes.

Method flow mAP
AVA [1] 14.5%

ACRN [2] 17.4%
Better AVA [3] 21.9%
HGRNN - RGB 20.9%

AVA [1] X 15.6%
D3D [4] X 23.0%

HGRNN - Flow X 23.6%

Table 5. Comparison of the proposed method with other state
of the art methods. A Xat the flow column indicates if optical
flow has been used.

a single Faster RCNN framework that detects the bounding
boxes and the action classes together. Using the proposed hi-
erarchical Graph-RNN within a Faster RCNN framework is
therefore a future research direction to improve the accuracy
further. However, it is unclear how much gain can be achieved
if optical flow is used in addition since [3] does not report any
results for optical flow.

5. CONCLUSION

In this paper, we proposed hierarchical Graph Recurrent Neu-
ral Networks for recognizing and localizing multiple activi-
ties that occur at the same time. The model learns the tempo-
ral context as well as the interactions of the detected persons
to recognize the actions. In our experimental evaluation, we
have shown that the proposed model outperforms a tempo-
ral as well as a graph RNN and that the proposed approach
achieves state of the art results on the AVA dataset.

6. REFERENCES

[1] Chunhui Gu, Chen Sun, David A Ross, Carl Von-
drick, Caroline Pantofaru, Yeqing Li, Sudheendra Vi-
jayanarasimhan, George Toderici, Susanna Ricco, Rahul
Sukthankar, et al., “AVA: A Video dataset of Spatio-
Temporally Localized Atomic Visual Actions,” in
CVPR, 2018, pp. 6047–6056.

[2] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin
Murphy, Rahul Sukthankar, and Cordelia Schmid,
“Actor-Centric Relation Network,” in ECCV, 2018, pp.
318–334.



[3] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew
Zisserman, “A better baseline for AVA,” arXiv preprint
arXiv:1807.10066, 2018.

[4] Jonathan C Stroud, David A Ross, Chen Sun, Jia
Deng, and Rahul Sukthankar, “D3d: Distilled 3d net-
works for video action recognition,” arXiv preprint
arXiv:1812.08249, 2018.

[5] Joao Carreira and Andrew Zisserman, “Quo Vadis, Ac-
tion recognition? A new model and the kinetics dataset,”
in CVPR, 2017, pp. 4724–4733.

[6] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini, “The Graph
Neural Network Model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[7] Marco Gori, Gabriele Monfardini, and Franco Scarselli,
“A New Model for Learning in Graph Domains,” in
IJCNN, 2005, pp. 729–734.

[8] Yujia Li, Richard Zemel, Marc Brockschmidt, and
Daniel Tarlow, “Gated Graph Sequence Neural Net-
works,” in ICLR, 2016.

[9] Georgia Gkioxari and Jitendra Malik, “Finding action
tubes,” in CVPR, 2015, pp. 759–768.

[10] Rui Hou, Chen Chen, and Mubarak Shah, “Tube Convo-
lutional Neural Network (T-CNN) for Action Detection
in Videos,” in ICCV, 2017, pp. 5822–5831.

[11] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Fer-
rari, and Cordelia Schmid, “Action Tubelet Detector for
spatio-temporal action localization,” in ICCV, 2017, pp.
4415–4423.

[12] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip
Torr, and Fabio Cuzzolin, “Online Real-Time multiple
spatiotemporal action localisation and prediction,” in
ICCV, 2017, pp. 3657–3666.

[13] Ross Girshick, “Fast R-CNN,” in ICCV, 2015, pp.
1440–1448.

[14] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan
Seybold, David A Ross, Jia Deng, and Rahul Suk-
thankar, “Rethinking the Faster R-CNN Architecture
for Temporal Action Localization,” in CVPR, 2018, pp.
1130–1139.

[15] Philippe Weinzaepfel, Xavier Martin, and Cordelia
Schmid, “Towards weakly-supervised action localiza-
tion,” arXiv preprint arXiv:1605.05197, 2016.

[16] Dong Li, Zhaofan Qiu, Qi Dai, Ting Yao, and Tao Mei,
“Recurrent tubelet proposal and recognition networks
for action detection,” in ECCV, 2018, pp. 303–318.

[17] Mostafa S Ibrahim, Srikanth Muralidharan, Zhiwei
Deng, Arash Vahdat, and Greg Mori, “A Hierarchical
Deep Temporal model for Group Activity Recognition,”
in CVPR, 2016, pp. 1971–1980.

[18] Sovan Biswas and Juergen Gall, “Structural Recurrent
Neural Network (SRNN) for Group Activity Analysis,”
in WACV, 2018, pp. 1625–1632.

[19] Yansong Tang, Zian Wang, Peiyang Li, Jiwen Lu, Ming
Yang, and Jie Zhou, “Mining Semantics-Preserving At-
tention for Group Activity Recognition,” in ACM-MM,
2018, pp. 1283–1291.

[20] Thomas N Kipf and Max Welling, “Semi-supervised
classification with Graph Convolutional Networks,” in
ICLR, 2017.

[21] David K Duvenaud, Dougal Maclaurin, Jorge Ipar-
raguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams, “Convolutional Net-
works on Graphs for Learning Molecular Fingerprints,”
in NIPS, 2015, pp. 2224–2232.

[22] Ashesh Jain, Amir R Zamir, Silvio Savarese, and
Ashutosh Saxena, “Structural-RNN: Deep Learning on
Spatio-Temporal Graphs,” in CVPR, 2016, pp. 5308–
5317.

[23] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing
Shen, and Song-Chun Zhu, “Learning Human-Object
interactions by Graph Parsing Neural Networks,” in
ECCV, 2018, pp. 401–417.

[24] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and
Raquel Urtasun, “3D Graph Neural Networks for
RGBD Semantic Segmentation,” in CVPR, 2017, pp.
5199–5208.

[25] Damien Teney, Lingqiao Liu, and Anton van den Hen-
gel, “Graph-Structured Representations for Visual
Question Answering,” in CVPR, 2017, pp. 3233–3241.

[26] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and
Devi Parikh, “Graph R-CNN for Scene Graph Genera-
tion,” in ECCV, 2018, pp. 670–685.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks,” in NIPS, 2015,
pp. 91–99.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep Residual Learning for Image Recognition,”
in CVPR, 2016, pp. 770–778.

[29] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar, “Focal Loss for Dense Object Detec-
tion,” in ICCV, 2017, pp. 2980–2988.


	1  Introduction
	2  Related Work
	3  DETECTION OF MULTIPLE ACTIVITIES
	3.1  Features
	3.2  Hierarchical Graph RNN (HGRNN)
	3.2.1  Scene RNN
	3.2.2  Graph RNN

	3.3  Implementation Details

	4  Experiments
	5  Conclusion
	6  References

