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ABSTRACT

In this paper, we focus on the facial expression translation
task and propose a novel Expression Conditional GAN (EC-
GAN) which can learn the mapping from one image domain
to another one based on an additional expression attribute.
The proposed ECGAN is a generic framework and is appli-
cable to different expression generation tasks where specific
facial expression can be easily controlled by the conditional
attribute label. Besides, we introduce a novel face mask loss
to reduce the influence of background changing. Moreover,
we propose an entire framework for facial expression genera-
tion and recognition in the wild, which consists of two mod-
ules, i.e., generation and recognition. Finally, we evaluate
our framework on several public face datasets in which the
subjects have different races, illumination, occlusion, pose,
color, content and background conditions. Even though these
datasets are very diverse, both the qualitative and quantitative
results demonstrate that our approach is able to generate facial
expressions accurately and robustly.

Index Terms— Generative Adversarial Networks (GANs),
Image-to-Image Translation, Facial Expression

1. INTRODUCTION
Recently, Generative Adversarial Networks (GANs) have
shown to capture complex image data with numerous appli-
cations in computer vision and image processing. For exam-
ple, Pix2pix [1] can translate an image from one domain to
another one in a supervised way, i.e., the training image pairs
are required. However, obtaining paired training data can be
difficult and expensive in some cases as indicated in [2]. To
tackle this limitation, Zhu et al. propose CycleGAN [2], in
which the model can learn the mapping function from one
domain to another one with unpaired training data. Similar
ideas have been proposed in [3, 4, 5, 6]. Despite these efforts,
facial expression translation remains a challenging task due
to the fact that the expression changes are non-linear [7, 8].

To overcome the aforementioned challenging, we propose
a novel Expression Conditional GAN (ECGAN) for facial ex-
pression translation based on CycleGAN [2]. ECGAN can
generate faces with different emotions which are conditioned
on the input expression attribute vector. Our work is inspired

by IcGAN [9] which factorizes an input image into a latent
representation and conditional information using the trained
encoders. By changing the conditional information, the gen-
erator network combines the same latent representation and
the changed conditional information to generate an image that
satisfies the changed encoded constraints.

In this paper, we present another strategy in which the
conditional attribute vector is concatenated with the image
representation in the convolutional layers, as shown in Fig. 1.
The conditional attribute is represented by a vector, which is
used to distinguish each attribute from the others. In the at-
tribute vector, only the element which corresponds to the label
is set to 1 while the rest of them are set to 0. Then the vector
is concatenated with the image embedding vector at the bot-
tleneck which is a fully connected layer of generator GX→Y .
In the generator GY→X , we change the expression vector by
swapping the corresponding two expressions. The conditional
label can be used to guide the transformation from one expres-
sion to another one. For instance, as shown in Fig. 1, the anger
label corresponds to an angry face with an open mouth. A cor-
respondence between the anger label and the open mouth is
built. During training time, GAN can learn this correspon-
dence automatically. Thus, ECGAN can reshape a face (e.g.,
mouth) by adding the conditional vector.

Moreover, we introduce a novel face mask loss to reduce
the influence of background changing similar to [10]. We also
present a complete framework for facial expression transla-
tion and recognition in the wild. Our framework comprises
of two modules, i.e., translation and recognition. ECGAN al-
lows us how to map a face with neutral expression to the faces
with other expressions (e.g., anger, disgust), and vice versa.
We can explicitly control the expression of a face image via
the conditional expression vector, which can be potentially
useful in several applications, such as data augmentation and
facial expression profiling. Then, we rely on a face recog-
nition model to evaluate the generated images of ECGAN.
Overall, our contribution is three-fold: (1) We propose EC-
GAN, which allows us to generate and modify real images
of faces conditioned on arbitrary facial expressions. (2) We
propose a novel face mask loss for alleviating the influence of
background changing. (3) We propose a new VGG score to
evaluate the generated images by GAN models.
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Fig. 1: Framework of the proposed ECGAN. Image X can be
converted to a new modified expression face image Y guided
by the facial expression attribute vector z. The expression at-
tribute vector z is concatenated with the image representation
in the convolution layers.

2. RELATED WORK
Generative Adversarial Networks (GANs) [11] have
achieved impressive performance on image generation
tasks [12, 1, 2, 7, 13, 14]. Moreover, conditional GANs [15]
are proposed to generate meaningful images that meet a cer-
tain requirement, where the conditioned label is employed to
guide the image generation process. The conditioned labels
can be discrete class labels [9], text descriptions [16, 17],
object keypoints [18], human skeleton [14], semantic maps
[19, 20] or reference images [1, 2]. The conditional mod-
els with images have tackled a lot of problems, e.g., image
editing [9], text-to-image translation [16, 21], image-to-image
translation [1] and video-to-video translation [22, 23].
Image-to-Image Translation learns a mapping function be-
tween different image domains using CNNs. Pix2pix [1] em-
ploys a conditional GAN to learn a mapping function from in-
put to output images in a supervised way. Wang et al. [13] fur-
ther propose Pix2pixHD model, which can turn semantic la-
bel maps into photo-realistic images or synthesizing portraits
from face label maps. Similar ideas have also been applied
to many other tasks, such as [24, 14, 25, 20]. However, these
methods need to use the paired input-output data for training,
which is not feasible for some applications. To overcome this
limitation, Zhu et al. [2] propose CycleGAN, which learns
the mappings between two different image domains with the
unpaired data. Moreover, many other GAN variants are pro-
posed to tackle the unpaired image-to-image translation task,
such as [3, 4, 26, 27, 28, 5, 6, 29, 30, 31, 8, 32, 7].
Face Editing. Face analysis has a wide range of applications,
such as face completion [33], hair modeling [34], aging [35],
image-to-sketch translation [36, 37]. For example, Taigman et
al. [4] propose Domain Transfer Network (DTN) for face-to-
emoji translation task. Several other works [9, 31, 38] focus
on human face attributes (e.g., bald, bangs, black hair, blond
hair, eyeglasses, heavy makeup, male, mustache, pale skin)

translation. For instance, Larsen et al. [38] use a combination
of Variational Autoencoder (VAE) and GAN to generate face
samples with visual attribute vectors added to their latent rep-
resentations. Shu et al. [39] present an end-to-end GAN that
infers a face-specific disentangled representation of intrinsic
face properties, including shape (i.e., normals), albedo, light-
ing, and an alpha matte. In this work, we focus on the arbi-
trary facial expression translation task with unpaired training
data.

3. FORMULATION
GANs [11] are composed of two competing modules, i.e., a
generator GX→Y and a discriminator DY (Where X and Y
denote two different domains), which are iteratively trained
competing against with each other in the manner of two-
player minimax. CycleGAN [2] includes two mappings
GX→Y :X→Y and GY→X :Y→X , and two adversarial dis-
criminatorsDX andDY . The generatorGX→Y mapsX from
the source domain to the target domain Y and tries to fool the
discriminator DY , whilst the DY focuses on improving itself
in order to be able to tell whether a sample is a generated
sample or a real data sample. The similar to the generator
GY→X and the discriminator DX . More formally, let xi∈X
and yj∈Y (For simplicity, we usually omit the subscript i and
j.) denote the training images in source and target image do-
main, respectively. We intent to learn a mapping function be-
tween X domain and Y domains with training data {xi}Ni=1

and {yj}Mj=1.

3.1. Objective Function

Our ECGAN objective contain several losses, we will intro-
duce each of them, respectively.
Adversarial loss. We apply a least square loss [40] to stabi-
lize our model during training. The least square loss is more
stable than the negative log likelihood objective and more
faster than Wasserstein GAN (WGAN) [41] to converge:

Llsgan(GX→Y , DY , X, Y ) = Ey∼pdata(y)
[(DY (y)− 1)2]

+ Ex∼pdata(x),z∼pz(z)[DY (GX→Y (x, z))2]
(1)

whereGX→Y tries to generate imagesGX→Y (x, z) that look
similar to images from domain Y , while DY aims to distin-
guish between translated samples GX→Y (x, z) and real sam-
ples y. GX→Y aims to minimize this objective against an
adversary DY that tries to maximize it. We have a similar
loss for generator GY→X and discriminator DX as well.
Cycle Consistency Loss. Note that CycleGAN [2] is dif-
ferent from Pix2pix [1] in the way that the training data in
CycleGAN is unpaired. CycleGAN introduces the cycle con-
sistency loss to enforce forward-backward consistency. The
cycle consistency loss can be regarded as “pseudo” pairs of
training data even though we do not have the corresponding
data in the target domain which corresponds to the input data
from the source domain. To include facial expression condi-
tional constraint z as part of the input to the generator and



Fig. 2: Process of computing the face mask.

discriminator of CycleGAN, the loss of cycle consistency is
reformulated as follows:

Lcyc(GX→Y , GY→X)

=Ex∼pdata(x),z∼pz(z)[‖GY→X(GX→Y (x, z))− x‖1]

+Ey∼pdata(y),z∼pz(z)[‖GX→Y (GY→X(y, z))− y‖1].
(2)

Context Loss. The pixel-wise MSE loss is used as a context
loss in [42, 43]. However, since the pixel-wise MSE loss of-
ten lacks high-frequency content which results in perceptually
unsatisfying solutions with overly smooth textures. Ledig et
al. [44] introduces the VGG loss, which is closer to perceptual
similarity. The formulation of the VGG loss as follows:

LV GGY →X
content =

1

Wi,jHi,j

Wi,j∑
w=1

Hi,j∑
h=1

(φi,j(X)w,h − φi,jGY→X(y)w,h)
2,

(3)
where, φi,j indicate the feature map obtained by the j-th
convolution before the i-th max-pooling layer within VGG
net [45], Wi,j and Hi,j are the dimensions of the respective
feature maps within the VGG network. Therefore, the final
loss LV GG

content = L
V GGY →X
content +LV GGX→Y

content .
Identity Preserving Loss. To reinforce the identity of the
face while converting, a face identity preserving loss [4] is
adopted to preserve the identity.

Lidentity(GX→Y , GY→X) = Ex∼pdata(x)
[‖GY→X(x)− x‖1]+

Ey∼pdata(y)
[‖GX→Y (y)− y‖1]

(4)
In such way, generators will take into consideration the iden-
tity problem through the back-propagation of the identity loss.
Face Mask Loss. In order to eliminate the influence brought
by background changes, we propose a novel loss that add a
face mask M to the L1 loss such that the face is given larger
weight than the background, as shown in Fig. 2. We apply
OpenFace [46] to extract face landmark. The formulation of
face mask is given as follows with � as the pixel-wise multi-
plication:

LY→X
mask = ‖(GY→X(GX→Y (x�Mx))− x�Mx)‖1, (5)

face mask Mx are set to 1 for foreground and 0 for back-
ground and applying a set of morphological operations such
that it is able to approximately cover the whole face. Thus,
Lmask = LY→X

mask + LX→Y
mask .

Full Objective. Consequently, the complete objective loss is:

L(GX→Y , GY→X , DX , DY ) =LcGAN + λ1Lcyc(GX→Y , GY→X)+

λ2Lcontext + λ3Lidentity + λ4Lmask,
(6)

where λ1, λ2, λ3 and λ4 are parameters controlling the rela-
tive relation of objectives terms.

Fig. 3: Different methods for facial expression generation
(Left) and neutralization (Right). Form left to right: in-
put, Pix2pix trained on paired data, CycleGAN, ECGAN and
Ground Truth (GT). Note that images are cropped for visual-
ization.

4. EXPERIMENTS

In this section, we first introduce the details of the employed
datasets in our experiments, then we demonstrate the results
and discussions of generation and recognition steps respec-
tively.
Datasets. We employ several datasets to validate our model.
These datasets contains faces with different races and they
have different illumination, occlusion, pose conditions and
backgrounds. See the supplementary materials for details.
Setup. We use the same training setups as CycleGAN [2].
Adam optimizer [47] with a batch size of 1 is used. The initial
learning rate for Adam optimizer is 0.0002 and β1 of Adam
is 0.5. For fair comparisons, all models were trained for 200
epochs. Training and testing stages are conducted out on an
Nvidia TITAN Xp GPU with 12GB memory.
Competing Models. We employ state-of-the-art image trans-
lation models, i.e., CycleGAN [2], Pix2pix [1] as our base-
lines. Note that Pix2pix [1] is trained on paired data. For a
fair comparison, we implement both baselines using the same
setups as our approach.
Evaluation Metrics. We provide both qualitative and quan-
titative results. Qualitatively, the images generated by dif-
ferent methods as shown in Fig. 3. Quantitatively, the ex-
pression recognition accuracy score is employed to evaluate
whether the generated images wear the correct expressions.
To this end, we propose a novel VGG Score which is sim-
ilar to “FCN Score” in [1] and Inception Score [48] as the
score of accuracy. The definition of the Inception Score is
exp(Ex[KL(p(y|x)||p(y))]), where x is an image, p(y|x) is
the inferred class label probabilities given x by the pre-trained
Inception network and p(y) is the marginal distribution over
all images. The VGG score is defined as Ex(p(y|x, z)),
where z is the conditioning label. Overall, the differences
between VGG score and Inception Score [48] are as follows.
First, the VGG Score is calculated using a pre-trained VGG
network, while the Inception Score is calculated using a pre-
trained Inception network. Second, even though both the
VGG Score and the Inception Score are defined to maximize
inferred probabilities in order to guarantee that the generated
images are meaningful, the difference is that the Inception
Score includes an extra term to maximize the entropy of the
marginal distributions to encourage the diversity of the gener-



(a) AR dataset. (b) Yale dataset. (c) JAFFE dataset.

(d) FERG dataset. (e) 3DFE dataset.

Fig. 4: Example results of ECGAN. The neutral expression
is the input and the others expressions are the output. We can
observe that even though the subjects in all datasets with sig-
nificant differences, our method consistently generates high-
quality images, which shows our method is very insensitive
to changing skin color, posture, illumination or occlusion.

Table 1: AMT Score of different methods.
Method CycleGAN [2] Pix2pix [1] ECGAN (Ours)
AMT Score 11.68 40.37 35.32

Table 2: VGG Score (%) of different methods.
Method Train Set Test Set VGG Score
baseline original original 74.77
CycleGAN [2] +generated original 76.41
CycleGAN [2] original generated 77.78
Pix2pix [1] +generated original 82.63
Pix2pix [1] original generated 83.24
ECGAN (Ours) +generated original 78.13
ECGAN (Ours) original generated 80.32

ated images.
Qualitative Evaluation. Fig. 3 demonstrates the images gen-
erated by our method and the baselines. We can observe that
the results generated by CycleGAN tend to be more blurry
compared with Pix2pix and ECGAN. ECGAN adopts the pro-
posed face mask loss to guide the generators to focus on the
face regions. Though Pix2pix also generates images with
competitive quality, the model can only be trained with paired
data. In contrast, our ECGAN produces good quality images
without the requirement of paired data. To exhaustively val-
idate the superiority of our ECGAN, Fig. 4 provides more
generation results. We can see that ECGAN generalizes well
to the unseen data. We also observe that even though the sub-
jects in all datasets have different races, poses, skin colors,
illumination conditions and occlusions, our method consis-
tently generates high-quality images. This demonstrates that
our method is very robust.
Quantitative Evaluation. We follow [2] to conduct the
“real vs fake” perceptual studies on Amazon Mechanical Turk
(AMT) to assess the realism of the generated images. Results
are shown in Table 1. We can see that the proposed method
is significantly better than CycleGAN, but a little worse than
Pix2pix. Moreover, we employ the expression recognition
accuracy to evaluate the correctness of the generated expres-
sions. The intuition is that if the generated images are realis-
tic, then (i) the classifiers trained on both the real images and
the generated images will be able to boost the accuracy of

(a) VGG score. (b) Expression space.

(c) Legend. (d) Loss and gradient.

Fig. 5: (a) VGG score. (b-d) Feature space of the generated
facial expressions. Each color represents a expression.

the real images (in this situation, the generated images work
as augmented data.) (ii) the classifiers trained on real im-
ages will also be able to classify the synthesized image cor-
rectly. VGG [45] is adopted as deep feature extractor for our
facial expression recognition task. Detailed recognition per-
formance is reported in Table 2, when the model is trained
only with the original training data, and tested on the test-
ing data, the score is 74.77%. When the generated images
are added to the training set as augmented data, the recogni-
tion score of the testing data is increased to 78.13%. Besides,
to validate that our model can generate the correct expres-
sions, we replaced the test set by the generated images and
achieve 80.32% recognition rate (Fig. 5(a)), which demon-
strates the effectiveness of our method since the generative
images have a slight better performance than the ground truth
images. Moreover, we also conduct the experiment of ex-
pression clustering to visulize the distribution of the gener-
ated images, t-SNE [49] is adopted to visualize the 4,096-D
deep feature on a two dimensional space. Fig. 5(b-d) illus-
trates the deep feature space of the generated images as well
as the evolving of the loss and gradient in the training stage.
Note that the generated images with the same expressions are
classified into the same clusters according to their represen-
tations in the deep feature space, which reveals that our EC-
GAN method can generate images with correct expressions.

5. CONCLUSION
We propose Expression Conditional GAN (ECGAN) for the
facial expression generation task. The main technical contri-
bution is the proposed Conditional CycleGAN which utilizes
the expression label to guide the facial expression generation
process. In ECGAN, the adversarial loss is modified to in-
clude a conditional expression feature vectors as parts of the
inputs to the generator and discriminator networks. The ex-
pression attribute vector is utilized to represent the expression
label. Experimental results demonstrate that our method not
only presents compelling results but also achieves competitive
results on facial expression recognition task.
Acknowledgment: We acknowledge the gift donation from



Cisco, Inc for this research.

6. REFERENCES

[1] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros, “Image-
to-image translation with conditional adversarial networks,” in CVPR,
2017.

[2] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros, “Un-
paired image-to-image translation using cycle-consistent adversarial
networks,” in ICCV, 2017.

[3] Ming-Yu Liu, Thomas Breuel, and Jan Kautz, “Unsupervised image-
to-image translation networks,” in NIPS, 2017.

[4] Yaniv Taigman, Adam Polyak, and Lior Wolf, “Unsupervised cross-
domain image generation,” in ICLR, 2017.

[5] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon
Kim, “Learning to discover cross-domain relations with generative ad-
versarial networks,” in ICML, 2017.

[6] Zili Yi, Hao Zhang, Ping Tan Gong, et al., “Dualgan: Unsupervised
dual learning for image-to-image translation,” in ICCV, 2017.

[7] Hao Tang, Dan Xu, Nicu Sebe, and Yan Yan, “Attention-guided genera-
tive adversarial networks for unsupervised image-to-image translation,”
in IJCNN, 2019.

[8] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Alberto Sanfe-
liu, and Francesc Moreno-Noguer, “Ganimation: Anatomically-aware
facial animation from a single image,” in ECCV, 2018.

[9] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M
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