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Abstract. Multi-task learning improves generalization performance by
sharing knowledge among related tasks. Existing models are for task
combinations annotated on the same dataset, while there are cases where
multiple datasets are available for each task. How to utilize knowledge of
successful single-task CNNs that are trained on each dataset has been ex-
plored less than multi-task learning with a single dataset. We propose a
cross-connected CNN, a new architecture that connects single-task CNNs
through convolutional layers, which transfer useful information for the
counterpart. We evaluated our proposed architecture on a combination
of detection and segmentation using two datasets. Experiments on pedes-
trians show our CNN achieved a higher detection performance compared
to baseline CNNs, while maintaining high quality for segmentation. It is
the first known attempt to tackle multi-task learning with different train-
ing datasets between detection and segmentation. Experiments with wild
birds demonstrate how our CNN learns general representations from lim-
ited datasets.

Keywords: Multi-task Learning, Pedestrian Detection, Bird Detection,
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1 Introduction

Multi-task learning aims to improve the generality of performance by mutually
utilizing information of other related tasks [1]. By modeling multiple tasks in
a single network, useful knowledge among tasks can be shared during training,
and diversified training data tend to cancel out bias and noise.

The most common way to achieve multi-task learning is to share parame-
ters in feature representation layers of single-task convolutional neural networks
(CNNs) and branch several top layers for task-wise prediction [2,3,4,5,6,7,8] as
illustrated in Fig. 1 (a). The shared layers, either by hard or soft sharing [9], learn
common representations for all tasks, and they achieve better generalization be-
cause more data are harder to overfit. However, this sharing architecture is not
very flexible, since sharing choices are discrete, and the number of shared layers
must be fixed among all tasks. Particularly in upper layers, the parameter shar-
ing can be too restrictive because feature representations must be specialized on
each task [10,11].
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(a) Parameter sharing (b) Cross-stitching [12] (c) Cross connection (ours)

Fig. 1: Comparison of basic units that constitute multi-task CNNs. (a) Param-
eter sharing: Two layers learn the same representations suitable for both tasks.
(b) Cross-stitching: Two scaling layers model channel-wise weighted sum of acti-
vation maps from conv layers. (c) Cross connection (ours): Two cross-connecting
layers model linear combination of activation maps utilizing all channels.

To alleviate this, cross-stitch networks [12] were proposed as a more gen-
eral CNN architecture for multi-task learning. As shown in Fig. 1 (b), it models
shared representations by using element-wise linear combinations of activation
maps from each task stream, while retaining individual network parameters.
It is, however, limited in that it considers only the combination of channels
with corresponding indices. Cross-stitching has been applied to multi-tasks that
have annotations on the same dataset, but as we tend to have different learn-
ing datasets for different tasks, we may like to use successful single-task CNNs
trained on each dataset, and combine them later for better performance.

In this paper, we propose a cross-connected CNN, a new architecture for
multi-task CNNs. As shown in Fig. 1 (c), we cross-connect intermediate layers
of single-task CNNs via convolutional layers. Our architecture enables task-wise
streams to communicate with each other by exchanging their activation maps,
while its novelty is in that the activation map passes through convolutional
layers. The convolution layers learn the importance of each activation map for
the other task, and determines which information to be sent to which destination.
The proposed architecture is a generalization of cross-stitching, and it can further
model mutual effects across channels. The cross-connection can be made across
any layers in principle.

To verify the effectiveness of cross-connected CNN, we compare its perfor-
mance with that of several baseline CNNs. For two tasks to combine, we employ
object detection and semantic segmentation, a combination that can be trained
on independent dataset. Considering properties of their annotations, they may
benefit from multi-task learning. Bounding boxes for object detection have a po-
tential to help semantic segmentation to localize a specific kind of object. Pixel-
level labels over an entire image for semantic segmentation have a potential to
provide knowledge for holistic understanding of a target scene, which may en-
courage robust detection in front of complex backgrounds. While existing studies
in multi-task learning only use datasets that provide both detection and segmen-
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tation annotations [13,14], we tackle multi-task learning from different datasets
of two tasks to exploit more diverse information sources. In the experiments,
we examined whether the cross-connected CNN can learn useful representations,
using two types of objects that are common to the two tasks: pedestrians and
wild birds. Experiments on pedestrians show the proposed CNN architecture
produces better detection performance by leveraging knowledge of segmentation
even when the training datasets are different between tasks. In the experiments
on wild birds, our CNN achieved a higher generalization performance compared
to baselines.

Contributions This paper has the following contributions. (1) We propose
a cross-connected CNN, a new architecture for multi-task learning. Convolu-
tional layers that cross-connect two single-task CNNs can model cross-channel
and cross-layer feature interaction between tasks, and the proposed model is a
generalization of existing ones. (2) To our knowledge, this is the first attempt to
tackle multi-task learning of object detection and semantic segmentation using
different datasets between tasks.

2 Related Work

Multi-task learning is a method to divert useful knowledge of one task to other
tasks. Although multi-task learning with simple parameter sharing [1] is suc-
cessful in various tasks [2,3,4,6,5,8], the combinations of tasks are based on one
of the following assumptions to ease parameter sharing: First, one task is an
auxiliary task to the other, such as pose estimation and action recognition [8],
and facial landmark detection and attribute prediction [6]. Second, one task is
short of training data, and thus helped by the annotations of the other task, as
in depth estimation and surface normal prediction [3]. Finally, both tasks have
the same training sets with multiple labels, which is valid for all of the above
examples. In these cases, hard parameter sharing in hidden layers is flexible
enough to successfully learn shared representations. However, more flexible net-
works are preferable to enable combination of broader tasks that do not meet
the assumptions.

Toward more flexible multi-task networks, soft parameter sharing [15,16] and
cross-stitch networks [12] have been proposed, and both of them combine pre-
trained single-task CNNs to utilize their knowledge. Soft parameter sharing reg-
ularizes single-task parameters and encourages them to be similar. Its network
structure is still within the paradigm of parameter sharing. The cross-stitch net-
works have more flexible structure. They model linear combinations of activation
maps between two task streams, and the parameters in single-task streams as
well as in connections can vary to fit the data without restrictions. However, the
cross-stitch networks are limited in that the combinations of activation maps are
restricted to corresponding channels. We show that our cross-connected CNN ef-
fectively utilizes two single-task CNNs pre-trained on different datasets between
tasks: object detection and semantic segmentation.

Focusing on multi-task learning of object detection and semantic segmen-
tation, there are a few studies utilizing deep CNNs [13,17,14]. MultiNet [13]
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incorporates three single-task CNNs for classification, detection and segmenta-
tion by parameter sharing. UberNet [17] and BlitzNet [14] aggregates activation
maps from middle layers of a single CNN via task-wise skip connections, as sim-
ilarly done in [18], but since all the task-wise streams use the activation maps
from the same single CNN, they are within the classical paradigm of param-
eter sharing. We differ from [13,17,14] in two respects. First, we construct a
multi-task CNN by integrating two single-task CNNs pre-trained on each task.
Although consuming a lot of memory due to increased network parameters, our
CNN can easily reuse existing network architectures. Second, we use different
training datasets between tasks in our evaluation, while in [13,17,14], they are
trained on the same dataset.

Instance segmentation [19,20,21,22] is also a candidate task to combine with
object detection, which can distinguish individual object areas of the same class.
However, fewer annotations for instance segmentation are available than those for
semantic segmentation, since it requires even more annotation effort. Learning
from partial annotation [22] can mitigate this labor, but at the cost of segmen-
tation accuracy. In this paper, we chose semantic segmentation for multi-task
learning with object detection.

Apart from multi-task learning, late-fusion-based output refinement [23,24]
is a promising approach to simultaneously improve multiple outputs from deep
networks for multiple tasks. This type of methods is useful for correlated pre-
dictions, such as segmentation and optical flow [23], and object and action de-
tection [24]. Those methods are different from this paper in the motivations, as
their aim is to improve performance by integrating two correlated outputs, while
ours is to improve generalization of feature-level representations.

3 Cross-connected CNN

We propose cross-connected convolutional networks for multi-task learning. In
the following, we explain our method by taking two-task learning as an exam-
ple. We denote the two tasks as Task A and Task B. As shown in Fig. 2, we
cross-connect feature extraction layers of two single-task CNNs via convolutional
layers. Our network consists of cross-connected layers shared by both tasks, and
task-specific layers separated for each task.

3.1 Components of Cross-connected CNN

Cross-connected Layers Cross-connected layers are designed to effectively
share knowledge between the combined tasks. The cross-connected layers are
represented as a stack of the basic unit as illustrated in a dotted rectangle in
Fig. 2. It shows how the n-th unit receives input maps and passes output maps to
the n+ 1-th unit. The unit consists of original convolutional layers derived from
single-task CNNs (drawn in blue and red) and additional convolutional layers
connecting two CNNs (drawn in green and yellow). All convolutional layers are
followed by an activation function ReLU (omitted for simplicity in the figure).
The connecting convolutional layers have as many 1 × 1 kernels as the number



Title Suppressed Due to Excessive Length 5

co
n

v
co

n
v

co
n

v

co
n

v
co

n
v

co
n

v
co

n
v

co
n

v

co
n

v

co
n

v
co

n
v

co
n

v

co
n

v

Task B

Cross-connected Layers Task-specific Layers

for Task A

for Task B

co
n

v

co
n

v
co

n
v

Feature Extraction Output Generation

conv
3 × 3

conv
3 × 3 +

+

Task A

Task B

𝒙𝑛
𝐴

𝒙𝑛
𝐵

𝒙𝑛+1
𝐴

𝒙𝑛+1
𝐵

𝑓𝑛
𝐴

𝑓𝑛
𝐵

conv
1 × 1

𝑔𝑛
𝐴

conv
1 × 1

𝑔𝑛
𝐵

Task A

Fig. 2: Overview of cross-connected CNN: We integrate two single-task CNNs
for Task A (blue) and Task B (red) by using cross connections. Cross-connected
layers are common to both tasks. 1 × 1 convolutional layers on cross connections
(green and yellow) model linear transformation and mutually transmit useful
information between tasks. Task-specific layers generate outputs for each task
separately on the basis of feature maps extracted in cross-connected layers. All
conv blocks are composed of a convolutional layer and an activation function
ReLU.

of channels in the output maps of the other stream. The kernel size is chosen
to be one-by-one, since the connection is for knowledge transfer rather than
feature extraction. The connections represent linear transformation, and learn
the importance of each activation map for the other task. We denote input maps
for n-th unit as xA

n and xB
n , and the transformations learned by the original

convolutional layers and ReLU as fAn and fBn . Assuming cross-connection layers
and ReLU learn transformations gAn and gBn , then xA

n+1 and xB
n+1 are computed

as {
xA
n+1 = fAn (xA

n ) + gAn (fBn (xB
n ))

xB
n+1 = fBn (xB

n ) + gBn (fAn (xA
n )).

(1)

Activation maps are added in element-wise manner. The second terms gAn (fBn (xB
n ))

and gBn (fAn (xA
n )) have information considered useful for one task based on the

knowledge obtained in the other task. In the first unit, both xA
1 and xB

1 are
equal to an input RGB image.

Task-specific Layers Task-specific layers are prepared for each task and
trained to be specialized on task-wise output generation. For example, object
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detection branches its network into two paths, which are responsible for bound-
ing box regression and its classification, respectively. Semantic segmentation
generates a map with pixel-wise labels. Since these layers are expected to per-
form different functions between tasks, their architectures are also required to
be designed differently. Therefore, generally, they cannot be cross-connected due
to the difference of the shape of their activation maps. Task-specific layers take
feature maps from cross-connected layers and separately process them without
communication between tasks.

3.2 Training Procedure

The training procedure of cross-connected CNNs consists of two steps: single-
task and multi-task learning.

Single-task Learning We first pre-train CNNs for each task independently
with individual datasets, without cross connections. By pre-training single task
networks, we can utilize task-specific knowledge of one task for the other task
during multi-task learning more easily. To cross-connect them, we have to se-
lect CNNs with a common structure. Each CNN is trained by minimizing task-
specific loss functions: LA for Task A and LB for Task B.

Multi-task Learning Having pre-trained single-task CNNs, we start to train
the cross-connected network. Layers in the network are initialized by weights
from pre-trained single-task networks, except for cross-connecting convolutional
layers, which are inserted after pre-training. The cross-connecting convolutional
layers are initialized by random weights, and they learn to transform and transfer
activation maps of one task to the others after being updated by multi-task
training.

As in [17], we use the sum of task-specific losses as a multi-task loss. We
denote it as Lall that satisfies the following expression:

Lall = LA + λLB . (2)

All layers in the network are updated in an end-to-end manner in accordance
with the gradient of both loss functions. To enable multi-task learning in different
datasets between tasks, we switch training datasets at a constant interval. We
compute a loss of only one task and set the loss of the other task that has no
annotations to zero. That is, Lall = LA for Task A, and Lall = λLB for Task B.

4 Experimental Evaluation

To examine the effect of a cross-connected CNN, we compare its performance
with single-task CNNs as well as those of the existing models on multi-task
learning of object detection and semantic segmentation. In those tasks, we show
that detection is enhanced by rich contextual information from segmentation,
and semantic segmentation is more aware of important targets by detection.
Specifically, we present experiments on two domains: pedestrians and wild birds.
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4.1 Network Implementation

We first prepare two single-task CNNs, each of which is specialized for object
detection and semantic segmentation. We use region proposal network (RPN)
[25] based on VGG16 [26] for detection, which has been shown to be effective
in pedestrian recognition. As in [25], we use a smooth L1 loss for bounding box
regression and a cross-entropy loss for its classification.

For semantic segmentation, we construct a VGG16-based pyramid scene pars-
ing network (PSPNet) [27] by combining the convolutional layers from VGG16
and a pyramid pooling module [27]. Although the original PSPNet is based on
ResNet, we use VGG16-based ones to clarify the effect of multi-task learning.
We use a cross-entropy loss summed over all pixels. Those two single-task CNNs
are also used as baselines for comparison.

Having the two VGG16-based single-task CNNs, we connect them to con-
struct a cross-connected CNN. We cross-connect the first 10 convolutional layers
(conv1 1–conv4 3) and assign the rest as task-specific layers. We set λ in Eq. 2 as
1.0, following related studies [13,14]. We fine-tune the cross-connected network
by the training procedure in Sec. 3.2. Since our architecture has more parameters
than the single-task CNNs, performance improvement may be natural. To clarify
the improvement by multiple datasets from that by more number of parameters,
we also fine-tune cross-connected CNNs only with a single dataset as baselines.
They are denoted as ‘single-task cross-connected’, and it is fine-tuned only by
detection dataset when evaluating detection, and by segmentation dataset for
segmentation evaluation.

For the multi-task baselines to compare with ours, we implement two types
of multi-task CNNs, one is hard parameter sharing and the other is a cross-stitch
network [12]. Both of them are applied to VGG16-based RPN and PSPNet, and
trained in the procedure in Sec. 3.2. For the parameter sharing, we test four
types of CNNs, each of them shares layers up to the 1st (2 layers), the 2nd (4
layers), the 3rd (7 layers), and the 4th pooling layer (10 layers), respectively. We
refer to each of them as ‘Share1,’ ‘Share2,’ ‘Share3,’ and ‘Share4,’ on the basis
of the index of the top pooling layer. A cross-stitch network, denoted as ‘Cross-
stitch,’ is implemented by replacing convolutional layers in the cross-connected
CNN with scale layers, which learn channel-wise multiplicative scaling factors.

4.2 Evaluation Metrics

We use log-average Miss Rate on False Positives Per Image (FPPI) within a
defined range to evaluate detection performance. For semantic segmentation, we
use Intersection over Union (IoU), which is used to evaluate the segmentation
accuracy of target areas.

In addition to the common ones, we define Detection Rate, a metric focused
on the recognition performance of a specific class, as the number of detected
instances divided by the total number of instance regions:

Detection Rate =
#(detected instances)

#(total instances)
. (3)
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This measure aims to evaluate awareness of instances, which should be en-
hanced by the jointly-learned detection. It is introduced since pixel-wise mea-
sures such as IoU do not penalize totally ignored instances. A higher Detec-
tion Rate indicates more instance regions are correctly labeled. Each instance
is considered to be detected if the detected area meets the following condition:
area(gt∩pred)

area(gt) ≥ Sth, where gt and pred denote the ground truth and prediction

labels of an instance, and Sth is a threshold. We take the average of Detection
Rate when changing Sth from 0.1 to 0.9 in increments of 0.1.

4.3 Pedestrian Detection and Segmentation

We first evaluate our proposed architecture by using pedestrian detection and
segmentation. In the field of road-scene understanding, while a recent dataset [28]
provides full pixel-wise labels, many datasets including the largest one [29] only
have person bounding boxes. Having CNNs trained on each large dataset, we
verify whether the cross-connected CNN successfully improves performance in
both tasks. As the detection dataset only has ‘person’ labels, we focus on ‘per-
son’ as a specific foreground object class in segmentation.

Datasets We use Caltech Pedestrian [29] for detection, a video dataset of
urban road scenes taken at 640 × 480 pixels. Pedestrians in each frame are an-
notated with bounding boxes. According to the official assignment from [29],
we used 42,782 images (set00–set05) for training and 4,024 images (set06–set10)
for testing. For the test, we use the ‘reasonable’ evaluation subset which targets
only pedestrians sized at 50 pixels or taller and at least 65% visible. Log-average
Miss Rate is calculated on FPPI in [10−2, 100] after filtering the proposal boxes
by non-maximum suppression (NMS) with a threshold of 0.7.

For semantic segmentation, we use Cityscapes [28], a recently released dataset
for semantic understanding of urban road scenes. It consists of 5,000 images with
2, 048 × 1, 024 pixels annotated with pixel-level labels. The images are divided
into 2,975 for training, 500 for validation, and 1,525 for testing. We use the val-
idation set for testing because annotations for the original test set are available
only in the official evaluation server. 19-class labels are assigned to each pixel
and we focus on ‘person’ and ‘rider’ as target classes. In this experiment, we
integrate the two labels for label consistency with Caltech Pedestrian.

Training Details We train multi-task CNNs in accordance with the proce-
dure described in Sec. 3.2. For detection, RPN [25] pre-trained on ImageNet [30]
is fine-tuned on Caltech Pedestrian. As in [25], we first resize images in Caltech to
960 × 720 pixels, and then crop 4 patches with 512 × 384 pixels from them, due
to GPU memory constraints. For semantic segmentation, VGG16-based PSP-
Net pre-trained on ImageNet and PASCAL VOC is fine-tuned on Cityscapes.
We randomly crop patches with 512 × 384 pixels from images in Cityscapes.
Convolutional layers in cross connections are initialized with Gaussian distribu-
tion with the standard deviation of 0.1. Since we use different datasets between
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Fig. 3: Evaluation results of pedestrian detection on Caltech Pedestrian. The
legend indicates log-average Miss Rate.

(a) Ground truth (b) Single-task (c) Share1 (d) Cross-connected CNN

Fig. 4: Example detections on Caltech Pedestrian by baselines and cross-
connected CNN. The ground truth, true positives, and false positives are dis-
played in yellow, green, and red rectangles, respectively.

tasks, we switch datasets during training at an interval of 100 iterations.

Results of Pedestrian Detection Fig. 3 shows the evaluation results on
Caltech Pedestrian. Multi-task baselines (‘Share1–4’ and ‘Cross-stitch’) have log-
average Miss Rates of 22.15–23.33%, which are worse by 0.68–1.86% compared to
that of ‘Single-task’. This suggests that hard parameter sharing suffers from less
flexibility, and the cross-stitch network fails in utilizing the single-task knowl-
edge because interaction of activation maps is limited between corresponding
channels. On the other hand, the cross-connected CNN achieves log-average
Miss Rate of 19.38%, which is 2.09% better than ‘Single-task’. In addition, it
is 3.31% better than ‘Single-task cross-connected’. The cross-connected CNN
successfully leverages the knowledge of semantic segmentation even when it is
trained by different datasets for each task. Fig. 4 shows example detections using
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Table 1: Results of semantic segmentation on Cityscapes
IoU of Average

‘person’ (%) Detection Rate (%)

Single-task (VGG16-based PSPNet) 76.68 84.90
Single-task cross-connected 76.24 85.03

Share1 75.23 88.00
Share2 75.31 88.10
Share3 75.47 87.56
Share4 75.39 87.76

Cross-stitch 75.39 87.91

Cross-connected (ours) 75.33 87.52

road sidewalk building wall fence pole traffic light traffic sign vegetation

terrain sky person car truck bus train motorcycle bicycle

(a) RGB (b) Ground truth (c) Single-task (d) Share1 (e) Cross-connected CNN

Fig. 5: Example segmentations on Cityscapes by baselines and cross-connected
CNN. (d) Share1 and (e) Cross-connected CNN can detect more ‘person’ regions.
Detected ‘person’ regions are highlighted by cyan dotted rectangles.

the single-task CNN, multi-task baseline (‘Share1’), and cross-connected CNN.
The cross-connected CNN can detect more pedestrians that are relatively hard
to recognize in front of complex backgrounds.

Results of Segmentation Table 1 shows the IoU and Detection Rate of ‘per-
son’ evaluated on Cityscapes. ‘Single-task’ achieved the highest IoU of 76.68%,
and multi-task learning reduces IoU by about 1%. This is probably because the
bounding boxes have poor information on region shapes, and thus their contri-
bution to accurate segmentation, especially near region boundaries, is limited.
In addition, the bounding boxes are provided only for persons and not for back-
grounds, which may decrease semantic effects to dense pixel-wise labels.

On the other hand, all multi-task CNNs achieved an average Detection Rate
on 2.62–3.20% better than ‘Single-task’ and 2.49–3.07% than that of ‘Single-task
cross-connected’. This means that multi-task learning with object detection en-
ables the recognition of more pixels within ‘person’ regions. Since there is only
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a difference of less than 1% between the cross-connected CNN and multi-task
baselines, they have a near-equivalent ability to leverage knowledge of pedestrian
detection. This may be because a large portion of missed persons is occupied
by unclear or low-resolution samples that are no longer detectable with visual
information only. Fig. 5 shows examples of semantic segmentation on the valida-
tion set. The regions of ‘person’ having low visibility are detected by multi-task
CNNs (‘Share1’ and cross-connected CNN) but not by the single-task CNN.
Some instances can be detected only by multi-task baselines, others can be de-
tected only by the cross-connected CNN. We include more result examples in
the supplementary material.

Comprehensively, the cross-connected CNN has a superior performance of
pedestrian recognition, on the basis of better performance in object detection
and nearly equivalent performance in semantic segmentation. It is notable that
cross-connected CNN benefits from multi-task learning of detection and seg-
mentation even when they are trained on different datasets, although baselines
deteriorate their detection performances.

4.4 Wild Bird Detection and Segmentation

Next, we evaluate the CNNs on the wild bird detection and segmentation, with
which we aim to detect birds in landscape images around wind turbines to un-
derstand whether our method works for a different type of real scenes. In this
experiment, we focus on the ‘bird’ class as a target. The goal is to improve the
detection performance of birds by the multi-task learning of bird detection and
segmentation of landscape images including birds. Unlike the previous experi-
ments, we train CNNs on the same dataset between the two tasks, so that we
can verify the generalization performance of bird detection with another dataset.

Datasets We use two datasets constructed for wide-area surveillance of wild
birds [31,32,33]: one for training and testing of object detection [31] and se-
mantic segmentation [32], and one only for testing of object detection [33]. We
hereinafter refer to the first one as Dataset A and the second one as Dataset B.
Dataset A consists of 32,445 landscape images with 5, 616 × 3, 744 pixels taken
under fine weather. We use only the right half of them (2, 808 × 3, 744 pixels),
which shows the surroundings of the wind turbine as in [32]. In the experiments,
we select 138 images that have ground truths both for detection and segmenta-
tion. 46 and 113 birds taller than 15 pixels are used for training and testing in
the experiments, respectively. For segmentation, each pixel is annotated into 4
classes: bird, forest, sky, and wind turbine. We use 40 images for training and
98 images for testing. Due to the sparsity of their distribution, we set the NMS
threshold to 0.1. Log-average Miss Rate is calculated on FPPI in [10−2, 102].

Dataset B is a set of images taken in a different power plant to those from
Dataset A. Dataset B consists of 2,222 images with 3, 840 × 2, 160 pixels cap-
turing landscapes under bad weather. Due to their complex backgrounds, it is a
more challenging dataset than Dataset A. We select 980 images where relatively
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Fig. 6: Evaluation results of bird detection on Dataset A. The legend indicates
log-average Miss Rate.

Table 2: Results of semantic segmentation on Dataset A
IoU of Average

‘bird’ (%) Detection Rate (%)

Single-task (VGG16-based PSPNet) 33.89 59.39
Single-task cross-connected 34.65 61.85

Share1 34.07 61.16
Share2 34.39 61.65
Share3 34.78 62.83
Share4 31.74 54.67

Cross-stitch 34.01 61.46

Cross-connected (ours) 35.45 62.64

more birds appear and use all of them for evaluating the generalization perfor-
mance of bird detection. 615 birds taller than 15 pixels are evaluated in the test.
Evaluation conditions are the same as those of Dataset A.

Training Details We use Dataset A for single-task and multi-task learning
of bird detection and segmentation. Considering the low resolution of the tar-
gets, we remove 3 convolutional layers (conv4 1-conv4 3) and the 4th pooling
layer from RPN. RPN generates bounding boxes with a stride of 8 pixels in an
input image. As in 4.3, we input images cropped with a size of 512 × 384 pixels.
We crop patches more around the wind turbine to avoid too many sky labeled
patches in the training. Since Dataset A has ground truths for both tasks, we
do not need to switch datasets during multi-task learning. For one input patch,
outputs of both tasks are simultaneously evaluated and all the network param-
eters are updated.

Results (Dataset A) Fig. 6 and Table 2 show the evaluation results of
bird detection and semantic segmentation on Dataset A, respectively. In object
detection, ‘Share3’ achieves the best performance of 16.95% among all methods.
The cross-connected CNN has a lower performance than all the baselines except
‘Share4’ and ‘Single-task cross-connected’, and shows almost the same result
as ‘Single-task’, ‘Share2’, and ‘Cross-stitch’. In the dataset, existing multi-task
CNNs are enough to utilize knowledge of segmentation for detecting more birds.
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In semantic segmentation, the cross-connected CNN achieved the highest IoU
35.45%. The Detection Rates of multi-task CNNs are better than the single-task
CNN, which shows the benefit of multi-task learning. The cross-connected CNN
improved the Detection Rate by 3.25% from that of ‘Single-task’ and outperforms
many baselines except ‘Share3’. As the numerical values of IoU and Detection
Rate in Table 2 are approximately correlated, the improved IoU by multi-task
learning should be because of more correctly detected instances rather than re-
finement of boundaries. Regarding the Detection Rate, the cross-connected CNN
has a similar performance to other multi-task baselines in leveraging knowledge
from detection for segmentation. More results are included in the supplementary
material.

There are two possible reasons why the proposed CNN did not outperform
all baselines especially in detection. First, it is relatively easy to detect the tar-
gets in Dataset A. The background of images in Dataset A is usually occupied
by a uniform blue sky; thus, the performance may be saturated among existing
models. Second, we use the same dataset between the tasks during multi-task
learning. Since the layers in both tasks learn very similar representations, it
could be easier to share knowledge than when using different datasets. In such
a case, hard parameter sharing could be sufficient for multi-task learning.

Results (Dataset B) Fig. 7 shows the evaluation result of bird detection on
Dataset B. The cross-connected CNN achieved a 10.99% better performance than
that of ‘Single-task’ and a 9.2% better performance than that of ‘Share3’, the
best of the multi-task baselines. This results suggests that the cross-connected
CNN obtains a higher generalization performance than parameter sharing and
cross-stitching. The ‘single-task cross-connected’ achieves 34.13%, which is also
better than all other baselines, probably due to more parameters than those of
other baselines. However, for the greatest improvement of the generalization per-
formance, multi-task learning with segmentation is indispensable. Fig. 8 shows
example detections on Dataset B. The cross-connected CNN can detect more
birds flying in the cloudy sky and in a small gap of the fence.

Together with the results on Dataset A, the baselines learn representations
specialized only for Dataset A, but the cross-connected CNN avoids overfitting
to Dataset A and learns more general representations. This means that it takes
less effort to prepare new training data when transferring a certain pre-trained
model to detection in another location. This is a beneficial property, since it is
laborious to manually annotate high-resolution landscape images.

5 Conclusion

We have proposed a cross-connected CNN, a new multi-task CNN consisting
of two inter-connected single-task CNNs. In our architecture, two single-task
streams pass their activation maps to each other via cross-connecting convolu-
tional layers. These layers enable activation maps to interact across their chan-
nels and learn how to utilize the knowledge obtained by task-wise pre-training.
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Fig. 7: Evaluation results of bird detection on Dataset B. The legend indicates
log-average Miss Rate.

(b) Single-task(a) Ground truth (d) Cross-connected CNN(c) Share3

Fig. 8: Example detections on Dataset B with baselines and cross-connected
CNN. The ground truth, true positives, and false positives are displayed in yel-
low, green, and red, respectively.

We evaluated our cross-connected CNN using a combination of object detection
and semantic segmentation, and compared it with existing multi-task models.
We conducted experiments on two datasets each of which targets pedestrians
and wild birds. In pedestrian detection and segmentation, we are the first to
tackle multi-task learning with different training datasets between two tasks.
We demonstrated that our CNN outperforms baselines in detection performance,
and leverages knowledge of segmentation. In wild bird detection and segmenta-
tion, we demonstrated that our CNN acquires more general knowledge applicable
to another dataset from limited training datasets. Future work will focus on en-
couraging a more flexible feature re-usage by dense cross connections, and the
application of it to other combinations of tasks.
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