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ABSTRACT

Road safety mapping using satellite images is a cost-effective but a
challenging problem for smart city planning. The scarcity of labeled
data, misalignment and ambiguity makes it hard for supervised deep
networks to learn efficient embeddings in order to classify between
safe and dangerous road segments. In this paper, we address the
challenges using a region guided attention network. In our model,
we extract global features from a base network and augment it with
local features obtained using the region guided attention network.
In addition, we perform domain adaptation for unlabeled target data.
In order to bridge the gap between safe samples and dangerous
samples from source and target respectively, we propose a loss
function based on within and between class covariance matrices.
We conduct experiments on a public dataset of London to show that
the algorithm achieves significant results with the classification
accuracy of 86.21%. We obtain an increase of 4% accuracy for NYC
using domain adaptation network. Besides, we perform a user study
and demonstrate that our proposed algorithm achieves 23.12% better
accuracy compared to subjective analysis.
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1 INTRODUCTION

Road accidents remain one of the pressing communal welfare con-
cerns. Regardless of notable advancements in the field of vehicle
technology and road engineering, on a global scale, traffic accidents
are one of the leading causes of premature death and injury. Ac-
cording to official statistics from the World Health Organization
(WHO), more than 1.25 million people die every year due to traffic
accidents. Besides, traffic accidents cost many countries up to 3%
of their GDP [21]. Therefore, minimizing the road accidents is a
worldwide challenge and can benefit a majority of the nations in
different ways. Towards this, it is important to understand which
road segments are potentially dangerous or safe.

Few works have shown the influence of environmental factors
like weather, light condition on road accidents [4, 7, 25]. However,
gathering such data is costly and laborious. Further, due to lack
of resources and technology, such data is not maintained properly
in most low and middle-income nations and unfortunately, these
are the nations which suffer dreadfully from traffic accidents [23].
Hence, there is a need for an efficient approach which can work
well with easily available and affordable data. To this end, satellite
images are used for road safety mapping [19]. However, the dataset
is mostly imbalanced, and percentage of the safe class is far more
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compared to the dangerous class. Further, the images are misaligned.
Thus, using such data for training efficient supervised models is
another challenge.
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Figure 1: A deep learning framework to predict city-scale
safety maps using raw satellite images for Domain A (Source
city) and Domain B (Target city) such that labels are avail-
able only for Domain A.

In addition, it has been observed that models trained using clas-
sical machine learning techniques for one region do not perform
well if tested on regions that differ immensely in terms of traffic
regulations, city planning, architecture, etc. [19]. Also, it is quite in-
convenient to obtain traffic accident data for every different region
and train a model for the same. Therefore, the difference in domains
is yet another challenge in the effective road safety mapping.

To address these challenges, we propose a deep region guided
attention network as shown in Figure 1. We use a base network



(ResNet-50) to extract global features. We further use a sub-network
which can attend to individual subregions. Towards this, we extract
the conv 2 layer features and divide them into N non-overlapping
regions. Region or part based networks have shown good accuracy
in re-identification tasks [30]. We further augment this network
to adapt to different domains. We use a loss function based on the
covariance matrix to minimize the gap between the source and
target domains. Our contributions are:

e We propose a deep learning framework that uses the region
guided attention network to predict accurate city-scale safety
maps from satellite images.

e We propose a domain adaptation network with a training
loss which minimizes the Frobenius norm of the difference
of within class covariance matrices of source and target, as
well as the difference of between class covariance matrices
of source and target.

The rest of this paper is organized as follows. The related work
is discussed in section 2. Section 3 presents the data sources and
collection technique and also introduces the formulation of the
problem. Our approach is explained in section 4. Section 5 shows a
user-study followed by Section 6, which describes our experiments.
Finally, the paper is concluded in section 7.

2 RELATED WORK

In this section, we briefly outline an overview of studies on accident
hotspot detection (also known as, black spots and black zones),
understanding road accidents, and lastly, the city-scale road-safety
mapping that exploits recent advancements in the field of deep
learning.

There are few studies on the detection of high-density accident
hotspots. Kernel density estimation and clustering have been used
to create classifiers to identify accident hotspots [1, 3]. Another
interesting work includes the use of Bayesian statistics to predict
accidents [10]. Fawcett et al. presented a Bayesian hierarchical
model to rank accident hotspots in line with their possibility to
surpass a threshold accident count in some future time period.
Researchers have developed models to estimate the total number of
crashes, the number of injury crashes, and the number of property
damages and proved that the models are statistically meaningful
and closer to real-world data [22]. In addition, association rules
have been used for the identification of accident situations that
frequently occur together [9, 14, 15]. Gomes proposed a model for
accident frequency estimation which takes the influence of the road
characteristics into account.

In the recent past, the remarkable progress in deep learning has
contributed significantly to the field of computer vision. Spatio-
temporal data have been used by researchers to predict the number
of accidents in a given area with the help of ConvLSTM [28]. Chen
et al. developed a Stacked Denoising Autoencoder for prediction of
traffic accident risk level at the city-scale using real-time GPS data
of users. In a similar study, Najjar et al. demonstrate that visual
attributes captured in satellite image can be used as a proxy sig-
nal of road safety. They proposed a deep-learning based mapping
framework that exploits open data to predict city-scale safety maps
at bearable costs. However, the distinction among the above frame-
works resides in their application itself. Both [6, 28] are interested in

the real-time prediction of traffic accidents, whereas [19] is inclined
towards assisting in informed decision-making for city-planning
and policy formulation when heterogeneous data is not accessible
or bearable. Our work is closer in spirit to Najjar et al.; however,
there are three major differences. First, we only consider safe and
dangerous classes compared to an additional neutral class defined
by Najjar et al. This is because a neutral road segment may not as-
sert a strong decision making during road safety planning. Second,
the authors extract features from AlexNet, whereas, we propose a
novel architecture. Third, we also perform domain adaptation for
the unlabeled target domain. Our two major goals are as follows.
First, we propose a region guided attention network to generate
a city-scale safety map. Second, we propose a domain adaptation
technique to generate safety maps where traffic accident data is not
available.

Domain Adaptation is a branch of machine learning in which we
aim at learning a well performing network from a source data that
can generalize well on a different but related target data distribution
[2]. It has been widely studied in visual applications [8, 27]. One
of the popular class of algorithms is discrepancy based methods
[18, 24, 26]. In particular, Sun and Saenko propose to minimize
the Frobenius norm of the difference between the feature covari-
ance matrix of source and target. In our case, we also make use
of the labels available for source and pseudo-labels for the target.
These pseudo-labels are determined by the model trained on the
source data. We then compute the feature covariance matrix for
safe and dangerous classes respectively. Further, we compute our
domain adaptation loss function based on within and between class
covariance matrices of source and target.

3 OVERVIEW

In this section, we present the data that we use at various stages of
the work. We also introduce the formulation of our problem.

3.1 Data

We select two cities, London (UK) and New York City (USA) for
the purpose of this study. Our reason for selecting these two cities
is two-fold. First, the availability of sufficient data to work on and
second, the extreme difference in traffic regulations, city planning,
architecture etc. Figure 2 shows the difference in the street network
orientation of both the cities [5]. All the data that we use in this work
are available as open data. Open data is the scheme under which
some datasets are freely available to use and republish, without any
restrictions [11]. We also present results for Denver (USA) which
is altogether a different domain.

Traffic Accident Data: We collected 99,516 traffic accident
records for London from 2013 to 2016.1 We gathered 1,256,205 traf-
fic accident reports for New York City (NYC) from 2012 to 2017.2
Similarly, we collected 143,776 traffic accident reports for Denver
from 2013 to 2017.3 Each record has numerous attributes such as
latitude, longitude, date, time, vehicle type etc. However, there is
a difference in the datasets. Table 1 presents sample records from

Uhttps://www.europeandataportal.eu/data/en/dataset/road-accidents-safety-
data

Zhttps://opendata.cityofnewyork.us

Shttps://www.denvergov.org/opendata/dataset/city-and-county-of-denver-
traffic-accidents



Table 1: Sample traffic accident reports for London.

ID Date Time Day of the week | Latitude | Longitude | No. of Vehicles | No. of Casualties
1 | 01/11/2016 | 2:30:00 AM 3 51.5847 0.2793 2 1
2 | 21/11/2016 | 6:00:00 PM 2 51.5092 0.0472 2 2
3 | 20/05/2016 | 7:00:00 PM 6 53.8126 -2.9323 1 1
4 | 11/01/2016 | 7:07:00 AM 2 54.9785 -1.6203 2 3

T s

(a) London

(b) Manhattan, NYC (c) Denver
Figure 2: The spatial differences in terms of street network
orientation. All the locations have visual difference in their
infrastructure orientation which makes learning a single
network for all different domains a challenging task.

London data. Information such as junction type, weather etc. is
only available in London dataset. Therefore, we restrict ourselves
to common attributes only.

Satellite Images: We collect satellite images using Google’s
Static Maps APL*

3.2 Problem Formulation

We divide the whole study area by imposing a grid G, where each
grid g; is a square region of s X s. Here, s is equal to 30 meters which
is a sufficient area for traffic accident analysis [19]. In this work,
our objective is to produce a model that learns features such that it
can predict the safety level of a given grid g; using its raw satellite
image.

In order to curate a training dataset, we plot each accident on
the grid using the locations from the Traffic Accident data. Each
grid g; is given a safety score S; which is equal to the number of
accidents in the grid. The higher S; corresponds to higher number
of accidents.

We obtain satellite image for each of these grids. To obtain the
image label for each g;, we apply the classical k-means algorithm
to bin S; into two clusters. Hence, we get two clusters of safe and
dangerous locations. We observe that the obtained set of labels
are highly imbalanced. Over 88% of the regions are labeled as safe.
Therefore, we re-sample the dataset by down-sampling the majority
class such that both classes are balanced out.

4 DEEP ATTENTION-NETWORK APPROACH

In this section, we begin by introducing the network architecture.
Then we elaborate the technique used to implement the unsuper-
vised domain adaptation for satellite images that belong to different
domains.

“4https://cloud.google.com/maps-platform/

4.1 Network Architecture

The model consists of a global and a local network, with the global
network borrowing layers from ResNet50 [17]. We show the archi-
tecture of the proposed model in Figure 3. There are three 2-way
switches in the architecture which enables the network to run in
two different modes. When all the switches are connected to red
nodes, the Deep Attention Model (DAM) mode is enabled whereas
if switches are connected to all the green nodes, the Deep Atten-
tion Model with Domain Adaptation (DAM-DA) mode is enabled.
The solid and dashed lines represent DAM and DAM-DA mode
respectively. We discuss the DAM-DA mode in the next section. As
shown in Figure 3, the global network is augmented with a local
network. In our experiments, we notice that the global network
based on ResNet only, gives significant false positives, where false
positives are defined as dangerous regions being predicted as safe.
A possible reason behind such false positives could be that the
satellite images are usually misaligned. To overcome misalignment
and improve the performance of ResNet, we design the network
such that it can exploit local regions in addition to the global region.
We perform Region of Interest (ROI) pooling on conv 2 layer of the
model with the subregions being N non-overlapping blocks. We
pass features of each subregion through a local network. The local
network consists of convi and convé layers. Each subregion of size
7x7 acts as an input to the local network to extract features and to
identify which of them is useful for the classification task. Thus, this
network attends to the regions which can significantly contribute
towards enhancing the classification accuracy. We perform average
pooling on the output of convé layer. We obtain a feature vector
of size 4096x1x1 that is passed through fc;. The subregion with
the maximum prediction probability of either of the two classes
(Safe and Dangerous) is concatenated to the feature-map of the
global network. We perform concatenation after the conv 4 layer
of the global network. Thus, we can see that only certain subregions
can guide the global feature vector for classification. Once average
pooling is performed, we pass the feature vector through fc to
obtain the final d-dimensional vector. We train the network using
cross entropy loss (L¢).

4.2 Domain Adaptation

In this section, we discuss our proposed Domain Adaptation (DA)
technique for the target domain where there is no annotated data
available. In our experiments, we consider London as the source
domain for which labeled data is present, whereas, NYC as the
target domain for which labels are not given. There are significant
differences in both the cities. Although NYC is nearly 20% smaller
in terms of area, it’s population density is almost double than that
of London. According to Nieminen et al., higher the population
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Figure 3: Architecture of our proposed network. There are three 2-way switches that enable the network to run in two modes.
When all the switches are connected to red nodes, DAM mode is enabled whereas if switches are connected to green nodes,
DAM-DA mode is enabled. The solid and dashed lines represent DAM and DAM-DA mode respectively. It consists of a global
and a local network. ResNet50 acts as a base to the global network. The ROI pooled features from conv 2 layer are passed
through the local network to identify the subregion with maximum prediction probability to guide the global network. L¢ is
used for training DAM and is also used along with Lp 4 for training DAM-DA (Best viewed in color).

density, higher are the chances of occurrence of accidents. Due to
above-mentioned reasons, these cities would be a good extreme
example for performing DA and can give us an idea of lower bound
of model’s performance.

Table 2: The comparison of the London and NYC in terms of
area and population density.

London | NYC
Area (mi%) 607 468.5
Population De‘r2151ty 14550 | 28.491
(people per mi®)

First, we train DAM network using data from the source domain
as explained in the section 4.1. Using this trained model, we generate

pseudo labels for data from the target domain. Thus, we have labels
for the source domain (London) and pseudo labels for the target
domain (NYC). Now, we use data from both source and target
domain to train the augmented DA (DAM-DA) network as shown
in Figure 3. There are three differences when compared to DAM.
First, this network has two additional convolutional layers in the
global network, convf and convg layers of dimensions 512x7x7 and
256x7x7 respectively, to reduce the dimensions of the feature maps.
This augmentation is necessary to be able to compute the covariance
matrix efficiently. We explain the utility of the covariance matrix

in the later part of this section. Second, instead of convi and conv,

2
layers in the local network, we use conv{ and COHVé layer of size
512x7x7 and 256x7x7 respectively. Again, this is done to reduce the

dimensions for covariance matrix calculation. Third, in DAM mode,



we train the network using L¢ only, but in DAM-DA mode we use
domain adaptation loss (Lp 4) along with L. We explain Lp 4 next.

Let x; denote the feature for i-th sample classified as dangerous
in source domain. Similarly, let y; be the feature for i-th sample
classified as safe in source domain. These features are obtained
from the final layer (fc) of the network as shown in Figure 3. Now,
we can obtain the within class covariance matrix Y gy € R%*? as,

— e s — )T
st N Zi,j#i(xl xj)(xi = xj)
oy —unT
F D i = Wi~ y)
Similarly, we can compute the between class covariance matrix
ZSB € RdXd as,

ZSB = Zi,j(xi —y)xi —yp' @

We can compute the within and between class covariance matrices
for target domain in a similar manner. Let these be denoted by > 7y
and ) 7p respectively. Then, we use the following loss function to
adapt to the target domain,

Lpa = HZSW - ZTWH;Zv * ”ZSB B ZTB”; ®)

where ||.||p denotes the Frobenius norm. Though the pseudo labels
are noisy, it is still beneficial to use them. In our experiments, we
demonstrate that using the loss to minimize the distance between
feature covariance matrices between source and target, which is
agnostic of source labels, achieves sub-par performance when com-
pared to Lp 4.

ey

5 USER STUDY

We conduct a study with an aim to observe that how accurately
humans can classify raw satellite images as safe or dangerous. It’s
first of its kind user study. We develop an annotation portal and
provide the raw satellite images from our test-data to the users.
The portal has two sections. In the first section, we provide four
sample images from each category. In the second section, an image
is presented to the user along with three options to choose from.
A user can mark an image as dangerous, safe or unsure. We show
the same image to three different users and record their response
to maintain the confidence in the user’s response. We also add
sixteen more sample images from each class to help the user. We
record users’ response for 1,000 images having 500 images from
each category, i.e., safe and dangerous classes.

In this study, 38 users participated. All the participants are above
18 years of age. To check inter-annotator agreement, we compute
Fleiss” kappa [13]. We achieve 0.2743 which depicts a fair agree-
ment. To assign a final label to the image, we calculate the mode of
all three responses. If all the responses are different, we discard that
response. In our study, we found 0.03% of such responses and dis-
carded them. Finally, 67.22%, 27.94%, and 4.84% images are marked
as safe, dangerous, and unsure respectively by users. In Table 3,
we provide a complete description of the user-study results. With
80.32% accuracy, users are able to detect safe images whereas the
accuracy drops to 45.02% for dangerous images. Therefore, in this
case, we find that humans can identify safe locations with better
accuracy than dangerous locations.

Table 3: The complete description of the user-study outcome
(in %).

Predicted
Safe | Dangerous | Unsure
El Safe 4041 05.56 432
g Dangerous | 26.80 22.37 0.51

6 EXPERIMENTS

We initially performed the experiments with AlexNet, VggNet,
DenseNet, and ResNet and found that ResNet gives the best ac-
curacy. We now prove the efficacy of the proposed technique by
assessing the classification accuracy of the predicted road safety
maps in multiple scenarios. It is also important to note the non-
triviality of learning from satellite data, as it is seen in the user
study, and can also be seen in the examples shown in Figure 4 and
Figure 5.

location,

(a) Dangerous
might be perceived as safe.

(b) Safe location, might be
perceived as dangerous.

Figure 4: Image Samples to show the non-triviality of learn-
ing from satellite data.

Training Parameters: We train our network on London dataset.
There are 4,517 training samples and 903 validation samples in each
class. The models are trained with a batch size of 4, with learning
rate as 0.0001 and a learning rate decay of 0.5 per 10 epochs. We
train it over 50 epochs on a Nvidia GeForce TITAN X GPU.

Evaluation of DAM: To assess the model, we test on unseen
data from London. As shown in Table 4, we test the models in
multiple scenarios such as with horizontal (DAM + HS), vertical
(DAM + VS), and square boxed (DAM + SQ) subregions and with
the combinations of them. We test another variation of the model
where the activation maps are produced based on an intermediate
convolutional layer. We experiment with two conv layers; conv 2
and conv 3 layer. We finally use conv 2 layer as we achieve better
results with it. We find that the DAM using HS+VS+SQ subregions
outperformed ResNet50, VGG19, and its other variants on the same
dataset as shown in Table 4.

One of our goals is to minimize the false positives. This is necessary
as the cost of predicting safe as dangerous may only lead to overly
conservative approaches for planning, whereas, having high false
positive rate with more dangerous locations being marked safe can
lead to fatal accidents. Therefore, we consider the classification of
dangerous images as safe to be more costly than vice-versa. We
test ResNet50 and DAM on London, NYC, and Denver test-set of



Table 4: Comparison of classification accuracy (in %) for
ResNet50, VGG19, and variants of the DAM both for origi-
nal dataset (London) and cross dataset (NYC and Denver).

Model Original Data Cross Data
London NYC | Denver

ResNet50 85.77 69.16 70.00
VGG19 85.83 64.60 70.00
DAM (HS) 85.81 72.28 | 76.20
DAM (VS) 85.52 74.77 | 75.00
DAM (SQ) 85.86 70.70 | 70.00
DAM (HS+VS) 85.34 7037 | 70.01
DAM (HS+VS+SQ) 86.21 67.23 | 69.86

7,228, 8,342, and 500 images respectively. From Table 5, we can see
that DAM gives fewer false positives in comparison to ResNet50
for every domain.

Table 5: A comparison of false positive rate between DAM
and ResNet50. All results are in percentage.

Model London | NYC | Denver
DAM 07.60 22.05 29.20
ResNet50 12.73 39.05 40.80

Cross Dataset Testing: We also perform cross-data testing and
test our model on NYC and Denver dataset. From Table 4, we can
see that DAM + VS and DAM + HS performs the best for NYC and
Denver dataset respectively. For DAM (HS+VS+SQ), the base model
trained on London with three sub-regions is over-fitting, and the
network does not generalize well on Denver. When we decrease
sub-regions to 2, the accuracy increases for NYC and Denver, and
the model performs the best when used with only one sub-region.

Qualitative Analysis: In order to understand the behavior of
the network qualitatively, we generate Class Activation Maps (CAM)
[29]. In Figure 5, the images in the top row correspond to a dan-
gerous image and its CAMs for ResNet50, DAM-Global Network,
and DAM-Local Network. Similarly, the images in the bottom row
correspond to a safe image and its corresponding CAMs. From the
top row in Figure 5c and Figure 5d, we can establish that the DAM
not only identifies the green region around the divider on the road
but also identifies the cars and roads in the surrounding areas as
well, which positively contributes towards the identification of this
image as dangerous. This image contains a dangerous location, but,
ResNet50 mis-classifies it as safe. As from top row in Figure 5b,
ResNet50 seems to have identified the green region and used that to
classify the sample as safe, whereas our proposed DAM is efficient
enough to correctly identify it as a dangerous location. Similarly,
from the CAM in the bottom row, we observe that ResNet50 recog-
nizes only roads whereas the DAM identifies houses and trees in
the image. Therefore, DAM correctly identifies this sample as safe
whereas ResNet50 mis-classifies it as dangerous.

Evaluation of DAM-DA Network: We train our DAM-DA net-
work with 2,085 images of each class, i.e., Safe and Dangerous. We
use 4,170 images each from the source (London) and target (NYC)
domain. We use a batch size of 16, a learning rate of 0.0001 and a

decay of 0.5 per 10 epochs. It is trained for over 50 epochs. We test
the DAM-DA network on 3,336 images from NYC. As shown in Ta-
ble 6, DAM-DA network gives an accuracy of 75.75% in comparison
to DAM network which gives an accuracy of 71.94%.

In another setting, we replace Lp 4 with the loss [24] in Equation
4,

L3, = = lIcs - Crll (@
DA~ g =S = +TlF

where Cg and Ct denotes the feature covariance matrix of source
and target samples in a training batch, respectively. When compared
toLpa, L%I;1 does not take the class labels into account. As shown in
Table 6, we obtain an accuracy of 74.73%. Similarly, DAM—DA—-Lp 4
results in the least false positives rate (18.94%) in comparison to its
counterparts. Thus, we can see that the class wise covariance loss
works better in this scenario.

Table 6: A comparison of DAM, DAM-DA with Lp,, and
DAM-DA with L%Q network with batch-size of 16.

Model Accuracy (%) | FPR(%)
DAM 71.94 30.03
DAM-DA-Lpa 75.75 18.94
DAM-DA-LST, 74.73 30.69

Comparison of DAM and Humans: We test DAM on the set
of same 1000 images that we use for user study. We present these
results in Table 7. We can see that DAM is more accurate than
humans by a significant difference of 23.12%. Moreover, there is a
substantial difference of 30.77% in precision. Therefore, this proves
that DAM performs better than humans in this case.

Table 7: A comparison of the performance of our proposed
deep learning model (DAM) and humans.

Model | Acc(%) | Precision F1
Humans | 62.78 0.601 0.687
DAM 85.90 0.909 0.850

7 CONCLUSION

In this paper, we address the challenge of learning efficient embed-
dings to classify the road segments as dangerous or safe using easily
available and inexpensive data. We leverage open data and satellite
images to predict city-scale road safety maps. We propose a deep
learning based model that uses a region guided attention network.
It consists of a global and a local network. The local network at-
tends to features in the subregions and the features with maximum
prediction score are used to guide the global features to enhance
the accuracy. We evaluate our network on the public dataset of Lon-
don and achieve the accuracy of 86.21%. We experiment with the
cross-datasets of NYC and Denver and achieve significant results
with the accuracy 74.77% and 76.20% respectively. In addition, we
propose a covariance loss based domain adaptation for the scenario
where target domain labels are missing. In our experiments, we
show that with the domain adaptation network, the accuracy of



Dangerous Image

Safe Image

(a) Original Images (b) ResNet50

(c) DAM-Global Network

(d) DAM-local Network

Figure 5: A comparison of activated features of a dangerous and a safe location among ResNet50, DAM-Global Network, and
DAM-Local Network. Top row and bottom row represent dangerous and safe locations respectively. DAM-Global Network
contains activated features in the global network before the concatenation of local network features. DAM-Local Network
contains activated features from the local network alone (Best viewed in color).

NYC increases by 4% and the network also achieves the lowest false
positives. We also conduct a user study and find that our model out-
performs human by 23.12%. In the future, we would like to explore
Places trained models instead of ImageNet trained models.
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