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Abstract—Person re-identification (Person ReID) is a challeng-
ing task due to the large variations in camera viewpoint, lighting,
resolution, and human pose. Recently, with the advancement of
deep learning technologies, the performance of Person ReID has
been improved swiftly. Feature extraction and feature matching
are two crucial components in the training and deployment stages
of Person ReID. However, many existing Person ReID methods
have measure inconsistency between the training stage and the
deployment stage, and they couple magnitude and orientation
information of feature vectors in feature representation. Mean-
while, traditional triplet loss methods focus on samples within
a mini-batch and lack knowledge of global feature distribution.
To address these issues, we propose a novel homocentric hyper-
sphere embedding scheme to decouple magnitude and orientation
information for both feature and weight vectors, and reformulate
classification loss and triplet loss to their angular versions and
combine them into an angular discriminative loss. We evaluate
our proposed method extensively on the widely used Person ReID
benchmarks, including Market1501, CUHK03 and DukeMTMC-
ReID. Our method demonstrates leading performance on all
datasets.

Index Terms—person re-identification, deep learning, feature
learning, metric learning

I. INTRODUCTION

PERSON re-identification (Person ReID) is an important
computer vision task, which aims to identify a person

from a set of gallery images captured under different cameras,
or different timestamps under a single camera [1]. In recent
years, Person ReID has drawn a lot of attentions from both
academia and industry, due to its huge potential applications,
such as suspect searching and multi-camera person tracking in
a large-scale surveillance system. However, the task of Person
ReID is extremely challenging due to the large variations in
camera viewpoint, lighting, resolution, and human pose.

The key issue of Person ReID problem is how to match
the query image/video with gallery images/videos. Generally
speaking, both query and gallery images/videos are repre-
sented by feature vectors, which are extracted by either fea-
ture learning methods or hand crafted heuristic algorithms.
This similarity of query feature vector and gallery feature
vectors is then calculated by certain distance measures and
the returned matching list is determined by the feature dis-
tances. Before the bloom of Convolutional Neural Networks
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(CNN), various heuristic representations have been used for
person re-identification, such as the local maximal occurrence
representation (LOMO) [2], hierarchical Gaussian descriptor
(GOG) [3]. These representations are designed to handle light
variance, pose/view changes, and so on. Other works focused
on similarity/metric learning techniques, which learn robust
metrics under various conditions. However, as these methods
using handcraft features and metrics, they are outperformed
by CNN based methods.

With the recent development of Convolutional Neural Net-
works (CNN) [4], the performance of Person ReID has been
increased dramatically. Fast evolvement in CNN architec-
tures, such as AlexNet [5], VGGNet [6], GoogleNet [7]
and ResNet [8], speeds up the development of Person ReID
algorithms. Meanwhile, the increasing scale of Person ReID
datasets [9], [10], [11], [12] also facilitates the study of Person
ReID. Existing CNN based methods can be roughly grouped
into three categories: 1) transferring and improving powerful
CNN architectures to Person ReID [13], [14], [15], [16],
[17], [18], where off-the-shelf feature extractors are used as
parts of the network architecture; 2) designing more effective
metrics [19], [20], [2], [21], [22], [23]; 3) combining priori
into network architecture for fine-grained feature learning [15],
[24], [25], [26], [27].

CNN with a triplet loss or classification loss is a popu-
lar framework for Person ReID. Many state-of-the-art meth-
ods [28], [29], [20], [30], [31] employ these loss functions or
their variants during the training stage. For instance, Xiao et al.
[31] trained a deep CNN from scratch using datasets from mul-
tiple sources. They employed softmax loss and domain guided
dropout for training and achieved competitive performance.
A multi-channel part-based CNN model under the triplet
framework was proposed in [29]. This model shows superior
performances on several popular benchmarks. Hermans et
al. [28] conducted extensive experiments to validate the
effectiveness of triplet loss. In [30], a two branch classification
loss was employed to learn discriminative local and global
features.

Despite having achieved great successes, traditional triplet
loss and classification loss have a few problems. Triplet loss
focuses on optimizing local distance metrics between positive
pairs and negative pairs, but lacks knowledge of global fea-
ture distribution. Classification loss overlooks the intra-class
variance and only maximizes inter-class variance. Meanwhile,
most current classification loss based works on Person ReID
lose the measure consistency between the training stage and
the deployment stage. In the training stage, these methods
calculate the inner product between the features x and the
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weight vector w. In the deployment stage, the features are
first normalized. Given two L2 normalized features xa and
xb, their similarity is generally calculated by cosine similarity
s(xa,xb) = xT

a xb = cos θab, which is determined by the angle
θab between features xa and xb. The inconsistency mixes the
orientation information and magnitude information of features,
which generates a gap between the training stage and the
deployment stage.

On the other hand, to achieve good retrieval performance
using distance measures such as L2 distance, the entries in
the feature vector should better be independent. However, the
weight vectors of fully-connected layers are usually corre-
lated after the training. This leads to correlated entries in
feature vectors, and causes inferior performance of learned
feature representation. Several works have explored how to
reduce the feature correlation in deep neural network training.
DeCov [32] encourages diverse representations by minimiz-
ing the cross-covariance of hidden activations. Some works
reduce correlation in feature entries by imposing orthogonal
constraints on weight vectors. PCANet [33] which is proposed
for image classification is featured by cascaded principal com-
ponent analysis (PCA) filters. It uses unsupervised methods
to learn orthogonal filters from raw images. In [34], Xie et
al. applied a regularizer which utilizes orthonormality among
different filter banks. SVDNet [14] achieves orthogonality
by taking a restraint and relaxation iteration (RRI) training
scheme, which iteratively integrates the orthogonality con-
straint in CNN training.

In this paper, we propose a homocentric hypersphere em-
bedding learning approach for Person ReID. In our framework,
the weight vectors and the features are normalized to two ho-
mocentric hyperspheres with the same coordinate origin. This
decouples the magnitude and orientation of feature vectors and
ensures the training and testing measure consistency. Based
on the homocentric hyperspheres, we jointly consider the
triplet loss and softmax classification loss from the perspective
of angle discrimination. In triplet loss, the optimization of
distances between features is reformulated to the optimization
of angular distances between features. In classification loss,
the posterior probability distribution will depend solely on
the angle between weight vectors and features. To ensure
feature orthogonality, we add a regularization term in the loss
function without relying on complicated iteration methods.
The angular versions of triplet loss and classification loss
work well under the unified settings and they complement each
other. Meanwhile, explicitly formulating the angle between the
feature vectors in training avoids the measure inconsistency
between training and evaluation stages, and improves the
generalization power of our approach.

We evaluate our approach on three widely used Person
ReID benchmarks, including Market1501 [9], CUHK03 [11],
DukeMTMC-ReID [12]. Our method demonstrates leading
results on all the evaluation datasets. Specifically, our approach
achieves 78.56% mAP and 91.28% Rank-1 accuracy on the
Market1501 dataset.

II. RELATED WORKS

A. CNN based Person Re-Identification

CNN based Person ReID methods consists of two key
components: feature learning and metric learning.

The network architecture is crucial for feature learning in
Person ReID. Using pre-trained networks has been proved to
be an effective strategy in many applications especially when
the data scale is not big enough to train a deep network
from scratch. Some state-of-the-art CNNs, such as AlexNet,
GoogLeNet, VGGNet and ResNet, have been employed as
the feature extraction module in Person ReID [13], [14], [15],
[18]. For example, Chen et al. [13] used AlexNet as feature
extractor in their deep quadruplet network. Sun et al. [14]
used CaffeNet and ResNet as backbone networks. GoogLeNet
was employed as the base network in [15], [18]. Besides
base networks, some works [25], [35], [36], [24] developed
customized modules to capture human body prior. Specifically,
Zhao et al. [25] considered human body structure information
in ReID pipeline. Features of different body regions are
extracted separately and merged by a tree-structured fusion
network. Chen et al. [35] developed a multi-scale network
architecture with a saliency-based feature fusion. Zhou et al.
[36] built a part-based CNN to extract discriminative and
stable features for body appearance.

In person Re-ID, various loss functions have been used
for learning deep embedding representations, including ver-
ification loss [19], [37], [11], [38], contrastive loss [17],
triplet loss [28], [29], [20] and quadruplet loss [13]. Yi et
al. [19] adopted a siamese network and softmax loss to
determine whether two input images belong to the same
person or not. Shi et al. [20] trained their network using
triplet loss with hard positive pairs mining. Chen et al. [13]
designed a quadruplet loss with a margin based online hard
negative mining. All these loss functions attempt to learn
pairwise/ternary/quaternary distance relations. Beyond direct
metric learning, some works [31], [30], [39] address the
ReID problem from the perspective of classification. Such
kind of works learn an embedding metric in an indirect
way by constructing clear classification boundaries. Typi-
cally, classification loss contains a softmax layer with em-
bedding features as input. Classification loss provides global
classification boundaries and metric learning constructs pair-
wise/ternary/quaternary distance relations.

The Person ReID problem shares similarity to the face
verification and recognition problems. Recently, several
works [40], [41] in face recognition area consider hyper-
sphere normalization constraints. In [40], SphereFace enforces
the weights of the last classification layer lie on a unit
hypersphere, which can be considered as a specific Weight
Normalization [42] with the length of weight vector as 1.
Liu et al. [41] normalized face features and optimized the
distance between features and feature cluster centroids within
a mini-batch. Our proposed method differs from these works
by considering both feature-class center distance and feature-
feature distance at the embedding learning stage. In addition,
we directly learn the class center vectors, without using the
mini-batch average as an approximation. Under homocentric
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hypersphere settings, we build a unified angular understanding
for the triplet loss and the softmax classification loss. As far
as we know, our work is the first to introduce normalization
on both class center vectors and features and apply angular
discriminative loss for Person ReID tasks.

B. Orthogonal constraints on weight matrix

The highly correlated weight vectors of fully connected
layers in CNN often results in correlations among entries of
feature vectors, which would reduce retrieval performance. In
order to fix this problem, several works have been proposed
to introduce orthogonality in neural networks [32], [33], [34],
[14]. Among them, SVDNet [14] uses a SVD layer as em-
bedding layer to project high dimension features to a lower
dimension manifold. The network is trained in a restraint and
relaxation iteration (RRI) scheme, which iteratively integrates
the orthogonality constraint in CNN training. During the
restraint stage, the weight matrix is replaced by an orthogonal
matrix, which is the product of the left unitary matrix and
the singular value matrix, and the rest of the network is
updated with this matrix fixed. At the relaxation stage, the
restraint is removed and the whole network is tuned end-
to-end. This procedure is repeated several times until the
convergence criteria are met. The SVD layer can be learnt by
back propagation. However, the training procedures are quite
complicated and the iterative training could take a long time.
Our method differs from previous methods by directly adding
an orthogonal regularization term to the loss function, which
is structurally simple, effective, and efficient in training.

III. HOMOCENTRIC HYPERSPHERE EMBEDDING

A. Triplet Loss and Softmax Loss

We briefly discuss triplet loss and softmax loss to draw forth
the proposed angular version of these loss functions under the
homocentric hypersphere assumption.

Triplet Loss. Triplet loss was firstly proposed in
FaceNet [43] to improve face recognition and verification. It
is originally derived from the Large Margin Nearest Neighbor
(LMNN) method [44]. The objective of triplet loss is to learn
an embedding function f : I 7→ x so that the embedded
features of images from the same class are closer than the
embedded features of images from different classes in the
embedding space. A sample triplet (Ia, Ip, In) consists of an
anchor sample image Ia, a positive sample Ip and a negative
sample In. (xa,xp,xn) are the corresponding embedded fea-
tures of (Ia, Ip, In). The general formulation for the triplet
loss can be represented as follows:

Lt =
∑
i∈B

∥∥xi
a − xi

p

∥∥2
2︸ ︷︷ ︸

pull

push︷ ︸︸ ︷
−
∥∥xi

a − xi
n

∥∥2
2
+m


+

, (1)

where [σ]+ denotes max(σ, 0), m is a preset margin, and B
is the number of triplets.

Eq. 1 contains a pull term to pull samples from the same
class together, and a push term to push samples from different

classes away. The training process of the neural network
is to optimize the embedding function f (adjust network
parameters) to ensure that, given the feature xi

a of an anchor
sample Ia in the i-th triplet, the distance between xi

p and xi
a

is smaller than the distance between xi
n and xi

a by a margin
m.

One key issue in training Deep CNN with the triplet
loss is hard triplet mining. The learning process may be
dominated by simple triplets, and thus fail to learn an effective
embedding. In this work, we employ an online hard triplet
mining strategy in which we only consider the hardest triplets
within a mini-batch. During the training phase, for each mini-
batch, we randomly select P identities, and for each identity,
we randomly select N samples. Therefore, each mini-batch
consists of P ×N samples. For each sample, we construct its
hard triplet by choosing its farthest positive sample feature as
xp and its closest negative sample feature as xn. In this way,
we modify the triplet loss with the online hard triplet mining
as

Lht =
∑

i∈P×N

[∥∥xi
a − xi

fp

∥∥2
2
−
∥∥xi

a − xi
cn

∥∥2
2
+m

]
+
, (2)

where xi
fp denotes the farthest one among the N − 1 positive

sample features, and xi
cn stands for the closest one among the

(P − 1)×N negative sample features for the anchor xi
a.

From Eq. 2, we can see that the effect of triplet loss with
online hard example mining is largely affected by the mini-
batch size. With a larger batch size and more samples for
each identity, it is more likely to find a farther positive sample
and closer negative sample, resulting in a harder triplet. It is
also worth noticing that triplet loss is effective in learning
pairwise/ternary distance relations; however, it only considers
samples within a mini-batch without considering global feature
distribution. The difficulty of training deep CNN with triplet
loss will increase with the growth of dataset scale, because the
number of triplets will increase exponentially with the increase
of the number of training samples.

Softmax Loss. Softmax loss [45] converts an input feature
into a posterior probability distribution. In softmax loss, the
predicted posterior probability for the `-th class is calculated
as follows:

p` =
exp(z`)∑K

k=1 exp(zk)
, (3)

with

z` = wT
` x+ b`, (4)

where w` and b` are weight vector and bias of the last fully-
connected layer for the `-th class, K is the total number of
classes.

With the posterior probability distribution of each input
feature, a cross-entropy loss can be calculated as follows:

Lc =
∑
i

− log(pyi
), (5)

where yi is the label of the i-th input sample.
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Fig. 1. Illustration of two homocentric hyperspheres. The small blue hy-
persphere is the weight hypersphere and the gray large hypersphere is the
feature hypersphere. Weight vectors ŵ` are represented by arrow lines with
magnitude α and different colors denote for different classes. Feature vectors
x̂ lie on the outer hypersphere with unit radius. θ1 and θ2 are angle distances
between the feature x̂ and weight vectors ŵ1 and ŵ2, respectively.

As indicated in the introduction section, in the deployment
stage, the angle distances between the features themselves,
and between the features and the weight vectors are crucial.
However, the original triplet loss and softmax loss do not
explicitly take the angle distance into account. There is no
previous work targeting to address this problem in Person
ReID. To overcome this issue, we propose a novel homocentric
hypersphere feature embedding learning method, as described
in the next subsection.

B. Homocentric Hypersphere Constrained Embedding Learn-
ing

Homocentric Hypersphere. The angle distances between
features, and between features x and weight vectors w`

are discriminative. To ensure the features x and the weight
vectors w` stay in a unified coordinate space, we propose
a homocentric hypersphere feature embedding scheme. In
our homocentric hypersphere, the weight vectors w` and the
features x lie on two individual hyperspheres but with the same
origin. The proposed homocentric hypersphere is defined as

ŵ` = α
w`

‖w`‖
, x̂ =

x

‖x‖
, (6)

where ŵ` is an L2 normalized weight vector scaled by a factor
α, and x̂ is an L2 normalized unit feature vector.

As shown in Fig. 1, the weight vectors ŵ` lie on a hyper-
sphere with radius α, and the feature x̂ lies on a hypersphere
with unit radius. These two hyperspheres have the same origin
o. In the hypersphere space, closer features have a smaller
angle distance. A feature will be more likely assigned to the
category whose weight vector has a smaller angle with the
feature. As shown in Fig. 1, the feature x̂ will be more likely
assigned to class 1 since it has a smaller angle distance θ1 to
ŵ1.

Fig. 2. The illustration of joint angular loss. The small circles within gray
ellipse are features extracted from the same mini-batch. Different colors stand
for different labels and all the features lie on the same feature hypersphere.
Classification centers are represented by blue and red arrow lines. The green
arrows show the pushing term of the triplet, while light blue arrows show
the pulling term. The blue and red arrows with double lines demonstrate the
guidance effect of class center vectors.

Based on the proposed homocentric hypersphere, we refor-
mulate the traditional triplet loss and classification loss into a
new angular triplet loss and a new angular classification loss,
respectively. Finally, we consider these two new losses in a
unified angular framework.

Angular Triplet Loss. Distance measure on triplet loss is
essential for feature learning. In the homocentric hypersphere
space, the features are normalized unit vectors. Given features
x̂1 and x̂2, x̂1 − x̂2 is a chord on feature hypersphere. As
three edges of a triangle (x̂1, x̂2, x̂1 − x̂2) are known, the
angle between features (x̂1, x̂2) can be represented as

θ = 2arcsin(
‖x̂1 − x̂2‖22

2
), (7)

where θ ∈ [0, π]. As shown in Fig. 2, given the triangle
(x̂a, x̂cn, x̂a − x̂cn), the angle θan between x̂a and x̂cn can
be calculated using Eq. 7.

Under the definition of homocentric hypersphere, it is more
natural to measure the angle distance between features rather
than Euclidean distance. Therefore, we reformulate Eq. 2 into
a new angular triplet loss as

Lat =
∑

i∈P×N

[
θiap − θian + θm

]
+
, (8)

where θiap stands for the angle between the anchor feature and
the hardest (farthest) positive feature. θian represents the angle
between the anchor feature and the hardest (closest) negative
feature. θm is an angular margin.

As illustrated in Fig. 2, we can see that the role of push
term in Eq. 1 is now to enlarge θan and the role of pull term
in Eq. 1 is to minimize θap w.r.t. angular margin θm.

Angular Classification Loss. In the homocentric hyper-
sphere formulation, the features and the class center vectors are
enforced to have the same origin o. To ensure the requirement,



5

we set the bias term b in the original softmax loss function to
0. In this way, we can reformulate Eq. 4 as

z` = α
wT

` x

‖w`‖ ‖x‖
= α cos θ`, (9)

where θ` is the angle between w` and x. In this case, the
original softmax loss function in Eq. 5 can be reformulated as

Lac =
∑
i

− log(
exp(α cos θyi

)∑K
k=1 exp(α cos θk)

). (10)

According to Eq. 9 and Eq. 10, in the training stage, our
target is to maximize the cosine similarity between the features
and the weight vectors of their corresponding class. This is
actually minimizing the angle distance between them. The
weight vector w` will accumulate information from all the
samples for training, and can be regarded as the class center
vector of class `. The posterior probability p` for class ` now
depends solely on the angle θyi between feature vector x
and class center vector w`. In the testing stage, the input
embedding feature will rank its neighbors according to the
angle distances. Therefore, the similarity measures in the
training stage and the testing stage are consistent in nature.

Joint Angular Loss. In the previous development, we have
reformulated the triplet loss and classification loss into their
angular versions. Here, we combine these two loss functions
as

La = Lat + λLac, (11)

where Lat and Lac stand for angular triplet loss and angular
classification loss, respectively. λ is a trade-off parameter
between these two loss functions.

The proposed joint angular loss in Eq. 11 is a natural way to
combine triplet loss and softmax loss under a unified angular
framework. Lac draws clear classification boundaries between
categories, and Lat gives a specific pairwise/ternary angle
relation. The angular margin θm in Lat has a direct connection
to feature discrimination on the person feature manifold, while
the identity classification center distribution in Lac provides
extra information to guide feature embedding learning.

In Fig. 2, we illustrate how joint angular loss works. We
view the optimization of the joint angular loss from an angular
discrimination perspective. For each mini-batch, we construct
hard triplet by selecting the hardest positive feature x̂fp with
the longest angle distance to anchor feature x̂a, and the
hardest negative feature x̂cn with the smallest angle distance
to x̂a. The angular triplet loss maximizes θan and minimizes
θap w.r.t. to angular margin θm. The angular classification
loss minimizes the angles θyi between features and their
corresponding class center vectors. The class center vectors
from angular classification loss guide the feature embedding
learning. This accelerates model training by preventing opti-
mization from getting stuck in local metric learning.

C. Orthogonal Constraints on Embedding Layer

The backbone CNN is often followed by a linear embedding
layer to project high dimensional features into a low dimen-
sional feature space. The correlation among weight vectors

in the embedding layer can compromise the performance of
descriptors . It is important to reduce the redundancy of weight
vectors in the embedding layer. Many works [32], [33], [34],
[14] show that an orthogonal constraints on the weight matrix
is effective to achieve this goal. This motivates us to place
orthogonal constraints on the embedding layer by forcing
WT

e We to be a diagonal matrix, where We represents the
weight of embedding layer. Specifically, we define

Re =
∑
||WT

e We − I|| (12)

and add this regularization term into the loss function. The
whole loss function now becomes

L = La + γRe, (13)

where γ is a trade-off parameter.
We adopt the metric used in [14] to measure the orthogo-

nality of embedding weights:

S(We) =

∑k
i=1 gii∑k

i=1

∑k
j=1 |gij |

, (14)

where gij denotes the entries in WT
e We and k represents

the number of weight vectors in We. The values of S(We)
range within [ 1k , 1]. A higher value of S(We) indicates better
orthogonality.

We conduct cross validation to find how the embedding
layer’s orthogonality affect the performance of trained models,
and determine the parameter γ. More details can be found in
section IV.D.

D. The Flowchart of Algorithm

The flowchart of our algorithm is shown in Fig. 3. We
divide our model into two parts: feature extraction part and
metric learning part. For feature extraction, different CNN
architectures can be employed, such as SqueezeNet, VGG and
ResNet. We use ResNet50 as the default feature extraction
network. All the CNNs are pre-trained on the ImageNet [46]
dataset. We apply average pooling on the final convolutional
feature maps to obtain feature vectors. For the metric learning
strategy, we employ an embedding layer after average pooling
to generate low-dimensional features. The homocentric hyper-
sphere constraints are then applied on features and class center
vectors. Joint angular loss is employed for metric learning with
additional orthogonal regularization.

IV. EXPERIMENTS

A. Datasets

We evaluate our approach on three widely used Person ReID
benchmarks, including Market1501 [9], CUHK03 [11] and
DukeMTMC-ReID [12].

Market1501 contains 32,668 pedestrian images of 1,501
identities. The images were collected by five high-resolution
and one low-resolution cameras. The resolution of pedestrian
images is 64× 128. Each identity in the dataset appears on at
least two different views. Following the official split of training
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Fig. 3. The flow chart of our proposed algorithm. The top part is a CNN
for feature extration and the middle part is the embedding layer. The bottom
illustrates our proposed homocentric hypersphere embedding learning part.
The different colors of embedded features represent different identities. The
embedded features are represented by the points on the feature hypersphere.

and testing sets, we use 751 identities for training, and the rest
750 for testing.

CUHK03 has 1,467 identities from two different views
in the CUHK campus. There are 14,097 images obtained
by Deformable Part based Models (DPM) [47], and 14,096
images obtained by manually labeling. 1,367 person identities
are used for training, and the rest 100 identities for testing.
In this paper, we follow the official evaluation protocols and
report performance of our method using both DPM detected
images and manually labeled images.

DukeMTMC-ReID is a subset of the multi-target, multi-
camera pedestrian tracking dataset. In this work, we use a
subset of [12] provided by [48], which has 16,522 images from
702 identities for training. The images were captured by eight
different high-resolution cameras. The images of pedestrians
are manually cropped. For testing, it has 2,228 images for
querying and 17,661 gallery images from 702 identities. We
follow the evaluation protocol in [48].

Table I provides a statistical summary of each dataset. It
lists the number of identities (ID), bounding boxes (BBoxes),

TABLE I
THE STATISTICS OF PERSON REID DATASETS.

Datasets ID BBoxes Distra Views
Market1501 1501 32668 2793 6
CUHK03 1467 14097 0 2
DukeMTMC-ReID 702 16522 0 8

distractors (Distra), and views (Views) in each dataset. Fig. 4
shows some sample images for each dataset.

B. Evaluation Protocol

We use Single-Query (SQ) by default for all datasets. Ac-
cording to previous evaluation protocols used in each dataset,
we adopt three evaluation protocols, including Cumulated
Matching Characteristics (CMC) (top1, top5 and top10), mean
Average Precision (mAP), and Rank-1 identification rate. On
Market1501 and DukeMTMC-ReID, query and gallery sets
may have the same camera views, but for each individual
query identity, his/her gallery samples from the same cameras
are excluded. On CUHK03, we follow the standard testing
protocol. For each query, we randomly sample one instance
for each gallery identity, and compute a CMC curve in the
single-gallery-shot setting. As random selection is involved,
we repeat the evaluation procedure for 10 times and report
the mean results. On Market1501, we report CMC and mAP.
On CUHK03, we report CMC for both detected and labeled
datasets. On DukeMTMC-ReID, we report Rank-1 identifica-
tion rate and mAP.

C. Implementation Details

Data preprocessing. We use the same data pre-processing
methods on all datasets. In the training stage, common data
augmentation methods are applied to images, including ran-
dom flipping, shifting, zooming, cropping and random eras-
ing [49]. The images are then resized to 256 × 128. As we
use pre-trained networks from torchvision1, all images’ pixel
values are normalized to [0, 1], subtracted by mean pixel values
of RGB channels and then divided by standard deviation of
each channel.

Optimization. For joint angular loss, our model is trained
with the batch size equals 256, and for each instance we
randomly select 8 samples. We apply Adam optimizer and
set the original learning rate to 1 × 10−3 for the first 50
epochs and gradually decrease it to 1 × 10−4 for next 50
epochs and 10−5 for the last 50 epochs. For homocentric
hypersphere embedding learning with orthogonal constraints,
extensive experiments are conducted to illustrate the effect
of hyper parameters of the model. The detailed analysis and
discussion on parameter setting would be given in the next
subsection. We use the same training schedule for triplet
loss baseline. For classification loss baseline, we apply SGD
momentum with Nesterov. We set initial learning rate to 0.1
for metric learning layers and 0.01 for pre-trained feature

1https://github.com/pytorch/vision
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(a) Market1501

(b) CUHK03

(c) DukeMTMC

Fig. 4. Sample images from Market1501, CUHK03 and DukeMTMC datasets.

extraction layer. We decrease the learning rate by a factor of
10 for every 40 epochs until convergence. Our implementation
is built on modified Open-ReID2, an open source Person ReID
library.

In the following subsections, we abbreviate our method with
the proposed Joint Angular Loss as JAL.

D. Exploratory Experiments

In this section, we conduct experiments to determine the
values of hyperparameters in our model, including the trade-
off parameter λ between angular triplet loss and classification
loss, angular margin θm, scaling parameters α and orthogonal
contraint parameter γ. We further show the influences of
different loss functions, orthogonal constraints and test data
augmentation to the ReID performance.

Choice of λ and angular margin θm. As we can see from
Eq. 8 and Eq. 11, λ controls the trade-off between angu-
lar triplet loss and classification loss, while angular margin
θm controls the boundary distance of identities on feature
embedding manifold. We cross validate λ and θm on the
ReID results on Market1501. The value of λ is selected from

2https://cysu.github.io/open-reid/

TABLE II
INFLUENCES OF DIFFERENT λ AND θm ON MODEL PERFORMANCE ON

VALIDATION SET OF MARKET1501.

λ θm Top1 Top5 Top10 mAP
0.1 1 89.70 96.47 97.95 75.18
0.1 3 90.11 96.73 98.01 76.10
0.1 5 89.82 96.59 97.98 76.16
0.1 8 90.05 96.29 97.45 75.96
0.1 10 89.79 96.47 97.95 76.22
0.2 1 91.11 96.52 98.00 77.88
0.2 3 90.95 96.78 97.94 78.05
0.2 5 91.01 96.51 97.92 77.77
0.2 8 90.53 96.38 97.73 77.31
0.2 10 90.65 96.14 97.63 77.13
0.5 1 90.83 96.59 97.71 77.36
0.5 3 90.97 96.50 97.92 77.76
0.5 5 91.06 97.12 98.04 77.81
0.5 8 90.56 96.44 97.83 77.78
0.5 10 90.47 96.18 97.77 76.40
1.0 1 90.38 96.23 97.77 76.48
1.0 3 90.68 96.53 97.92 77.22
1.0 5 90.62 96.35 97.71 76.08
1.0 8 89.55 95.87 97.71 75.23
1.0 10 90.08 96.02 97.51 76.82

TABLE III
INFLUENCES OF DIFFERENT α ON MODEL PERFORMANCE ON

MARKET1501.

α Top1 Top5 Top10 mAP
3 85.81 93.68 96.02 69.20
6 87.00 94.54 96.56 73.89
9 89.80 95.84 97.28 76.04
12 90.95 96.78 97.94 78.05
15 90.94 96.94 97.88 77.24
18 90.52 96.82 98.03 76.96
20 90.80 96.74 98.10 76.53
30 89.64 96.37 97.69 75.36

{0.1, 0.2, 0.5, 1} and θm is selected from {1◦, 3◦, 5◦, 8◦, 10◦}.
We experimentally found that models with reasonably higher
weight of triplet loss and smaller angular margin tend to
have better performance on validation set. As we can see
from Tab. II, the best λ and θm on the Market1501 are
around 0.2 and 3◦, respectively. The Table also shows that
our model is insensitive to these two parameters. To simplify
the experiment, we set λ = 0.2 and θm = 3◦ in all the later
experiments.

Feature and weights scaling. According to Eq. 10, there
is a hyper parameters α to adjust the scale of the inputs
to the angular softmax layer after the feature vectors and
weights normalization. We conducted experiments on different
α, to study how the scaling parameter affect the performance.
As we apply angular triplet loss, the value of α would
not affect the triplet part. We select the value of α from
{3, 6, 9, 12, 15, 18, 20, 30}. As it is showed in Tab. III, the
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TABLE IV
INFLUENCES OF DIFFERENT γ ON MODEL PERFORMANCE ON

MARKET1501. SW IS THE MEASURE OF ORTHOGONALITY OF WEIGHTS.

γ Top1 Top5 Top10 mAP SW
10−1 91.02 96.60 97.98 77.92 0.9995
10−2 91.30 96.52 98.10 78.37 0.9995
10−3 91.30 96.60 97.70 78.50 0.9986
10−4 91.07 96.46 98.06 78.26 0.9984
0 90.95 96.78 97.94 78.05 0.0816

model performance is much influenced by the value of α.
However, the trained models generally work well in a range
of α. For simplicity, we keep α = 12 in all our experiments,
and our proposed method works very robustly.

Orthogonal constraints. According to Eq. 13, the hyper pa-
rameters γ controls the trade-off between the joint angular loss
and regularization term. We conducted extensive experiments
to show γ’s influence on embedding layer’s orthogonality. The
value of γ is selected from {0, 10−1, 10−2, 10−3, 10−4}. As
we can see from Tab. IV, our model is insensitive to the
value of γ from 10−4 to 10−1, while the introduction of
orthogonality regularization improves the model performance
(e.g. , comparing γ = 10−3 with γ = 0 ).

Effect of joint angular loss. To show the effect of different
components of JAL, we conduct experiments on different
variants of JAL on the Market1501, CUHK03 labeled and
DukeMTMC-ReID datasets. The results are reported in Tab. V,
where C stands for JAL with only classification loss. T stands
for JAL with only triplet loss and hard example mining. C+T
stands for JAL with combined classification loss and triplet
loss. JAL represents joint angular loss without orthogonal
regularization, and JALo represents JAL with orthogonal reg-
ularization.

Several important observations could be made from Tab. V.
1) Combining classification loss and triplet loss largely im-
proves the performance over using them individually, with
around 7.7% and 3.0% increases on mAP on Market1501,
10.2% and 1.0% increases on Top1 on CUHK03, 9.6% and
1.2% increases on mAP on DukeMTMC-reID, respectively.
This shows that these two loss functions are complementary
in nature. 2) Using the proposed homocentric hypersphere
embdding, JAL outperforms the baseline C+T by 4% on
mAP on Market1501, 0.4% on Top1 on CUHK03, and 3%
on mAP on DukeMTMC. This demonstrates the benefit of
Joint Angular Loss, which optimizes angle distances rather
than Euclidean distances. 3) The orthogonal regularization on
weights provides further performance boosts from 0.5% to 2%
on CMC Top1 and mAP on the three datasets.

Test data augmentation. Test data augmentation simulates
different viewpoints and occlusion effect of original person
image. We apply common data augmentation methods, such
as random cropping and flipping. The final feature vector of
a given image is produced by averaging all features generated
by the augmented images and the original one. In Tab. VI , we
show the number of augmented images used for producing the
final feature and the ReID performances on Market1501. One

Fig. 5. Sample retrieval results on Market1501 using the proposed method.
The images in the first column are the query images. The top-10 retrieved
images are sorted according to the similarity scores from left to right. Gallery
images captured from the same camera view as query images are already
excluded from the ranking list. The correct matches are in the green rectangles,
and the false matching images are in the red rectangles.

can see that data augmentation can improve the performance.
In the experiments, we report the results of our method
with and without data augmentation for more comprehensive
comparison with other methods.

E. Comparison with state-of-the-art methods

Market1501. Market1501 is currently the largest bench-
mark dataset for Person ReID, and many methods have been
reported on this dataset. We compare the proposed method
with most of the state-of-the-arts, including Discriminative
Null Space (DNS) [50], Gated Siamese Convolutional Neu-
ral Network (G-CNN) [16], Unlabeled Sample Generation
GAN (GAN) [48], Deep Transfer Learning (DTL) [18], Joint
Learning Multi-Loss (JLML) [30], TriNet [28], Deep Context-
aware Features (DCF) [24], Spindle network (Spindle) [25],
Supervised Smooth Manifold (SSM) [51], Point Set Similarity
Feature (PSSF) [52], Deeply Learned Part-Aligned representa-
tion (DLPA) [15], and Pose-driven Deep Convolutional (PDC)
model [53] . The experimental results are shown in Tab. VII.

With ResNet50 as the pre-trained network, the proposed
JAL approach achieves 78.1% mAP and 91.0% CMC top1. It
is superior to all compared methods. Specifically, JAL outper-
forms TriNet [28] by 6.1% on CMC top1 and 9% on mAP. In
addition, JAL also outperforms the newly proposed methods,
PLPA and PDC, by a large margin. With the orthogonal
regularization and 16 times test augmentation, the performance
of JAL is further improved.

In Fig. 5, we show the CMC top 10 retrieval results of four
query images in Market1501. We can see that JAL exhibits
strong robustness to scale, viewpoint and pose. The false
matchings marked in red bounding box look very similar to
the query image in visual appearance and human pose. These
false matchings are even very challenging for human.

CUHK03. On CUHK03, we follow the standard protocol
and conduct experiments using both labeled and detected
datasets. We compare our model with Filter Pair Neural
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TABLE V
THE EFFECT OF DIFFERENT COMPONENTS OF JAL. C STANDS FOR JAL WITH ONLY CLASSIFICATION LOSS. T STANDS FOR JAL WITH ONLY TRIPLET

LOSS AND HARD EXAMPLE MINING. C+T STANDS FOR JAL WITH COMBINED CLASSIFICATION LOSS AND TRIPLET LOSS USING λ = 0.2. JAL
REPRESENTS JOINT ANGULAR LOSS WITHOUT ORTHOGONAL REGULARIZATION, AND JALo REPRESENTS JAL WITH ORTHOGONAL REGULARIZATION.

Market1501 CUHK03 label DukeMTMC
Method Backbone Top1 Top5 Top10 mAP Top1 Top5 Top10 Top1 Top5 Top10 mAP
C

R
es

N
et

50
85.18 94.30 96.11 66.36 76.83 93.26 96.37 71.97 83.95 87.59 52.93

T 86.20 94.80 96.71 71.02 86.06 97.54 98.81 76.30 87.75 91.52 61.35
C+T 88.40 95.55 96.91 74.03 86.99 97.74 99.01 77.42 88.47 91.43 62.53
JAL 90.95 96.78 97.94 78.05 87.43 97.74 98.74 80.61 90.56 93.31 65.55
JALo 91.28 96.55 97.81 78.56 88.80 98.20 99.50 82.54 91.16 93.76 66.85

TABLE VI
TEST DATA AUGMENTATION INFLUENCES ON MARKET1501. THE MODEL

IS TRAINED WITH JOINT ANGULAR LOSS AND RESNET50 AS FEATURE
EXTRACTOR.

Image Num Top1 Top5 Top10 mAP
Original 91.28 96.55 97.81 78.56
2 91.75 96.82 98.10 79.50
4 92.40 97.10 98.37 79.90
8 92.25 97.00 98.22 80.18
12 92.34 96.91 98.22 80.22
16 92.10 97.00 98.37 80.31
32 92.16 97.18 98.34 80.36

TABLE VII
SINGLE-SHOT PERFORMANCE COMPARISON OF DIFFERENT METHODS ON

MARKET1501. WE HIGHLIGHT TOP-5 RESULTS ACCORDING TO MAP.

Method Top1 Top5 Top10 mAP
DNS [50] (CVPR16) 55.4 - - 29.9
G-CNN [16] (ECCV16) 65.9 - - 39.6
GAN [48] (ICCV17) 78.1 - - 56.2
DTL [18] (Arxiv16) 83.7 - - 65.5
JLML [30] (IJCAI17) 85.1 - - 65.5
DCF [24] (CVPR17) 80.3 - - 57.5
Spindle [25] (CVPR17) 76.9 91.5 94.6 -
PSSF [52] (CVPR17) 70.7 90.5 - -
DLPA [15] (ICCV17) 81.0 92.0 94.7 63.4
PDC [53] (ICCV17) 84.1 92.7 94.9 63.4
SSM [51] (CVPR17) 82.2 - - 68.8
TriNet [28] (Arxiv17) 84.9 94.2 - 69.1
JAL 91.0 96.8 97.9 78.1
JALo 91.3 96.6 97.8 78.6
JALo+aug16 92.1 97.0 98.4 80.3

Networks (FPNN) [11], Improved Deep Learning Architec-
ture (IDLA) [37], Local Maximal Occurrence Representation
(LOMO), Sample Specific SVM (SS-SVM) [54], Discrimi-
native Null Space (DNS) [50], Deep Context-aware Features
(DCF), Quadriplet loss (Quadruplet) [13], Spindle Network
(Spindle), Supervised Smooth Manifold (SSM) [51], Multi-
scale Deep Architecture (MuDeep) [55], Deeply Learned Part-
aligned (DLPA) [15] and Pose-driven CNN (PDC) [53]. The

Fig. 6. Sample retrieval results on CUHK03 labeled dataset using the
proposed method. The images in the first column are the query images. The
top-10 retrieved images are sorted according to the similarity scores from
left to right. Gallery images captured from the same camera view as query
images are already excluded from the ranking list. The correct matches are in
the green rectangles, and the other retrieved images are in the gray rectangles.

results are shown in Tab. VIII and Tab. IX. Fig. 6 shows some
sample query results on the CUHK03 labeled dataset. The
proposed method retrieves all the images of the same persons
from different views and the other retrieved person images are
also visually similar with the query samples.

Using the same hyper parameters as used on the Mar-
ket1501, our method JALo achieves 88.8% CMC top1 on
CUHK03 labeled dataset and 86.9% CMC top1 on CUHK03
detected dataset, which are leading results on CUHK03
dataset. It is worth noticing that DLPA [15] uses both
CUHK03 and Market1501 for training. Spindle [25] uses
seven data sets for training, including CUHK01, CUHK03,
Market1501 and etc. PDC [53] fuses two Google Inception
sub-networks to consider global feature maps and part feature
maps. Our approach is trained on CUHK03 with only a single
ResNet50.

DukeMTMC-ReID. On this dataset, we compare
our method with Scalable Person Re-identification
(BoW+KISSME) [9], Local Maximal Occurrence
Representation (LOMO) [2], Improved Attribute Person ReID
(APR) [56], Unlabeled Sample Generation GAN (GAN),
Pedestrian Alignment Network (PAN) [26], SVDNet [14]
and Deep Learning Multi-Scale Representations (DPFL) [35],
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TABLE VIII
SINGLE SHOT PERFORMANCE COMPARISON OF DIFFERENT METHODS ON
CUHK03 LABELED DATASET. WE HIGHTLIGHT THE TOP-5 PERFORMERS

ACCORDING TO CMC TOP1.

Method Top1 Top5 Top10
FPNN [11] (CVPR14) 20.7 51.5 66.5
IDLA [37] (CVPR15) 54.7 86.5 93.9
LOMO [2] (CVPR15) 52.2 82.2 92.1
SS-SVM [54] (CVPR16) 57.0 84.8 92.5
DNS [50] (CVPR16) 58.9 85.6 92.5
DCF [24] (CVPR17) 74.2 94.3 97.5
Quadruplet [13] (CVPR17) 75.5 95.2 99.2
SSM [51] (CVPR17) 76.6 94.6 98.0
MuDeep [55] (ICCV17) 76.9 96.1 98.4
DLPA [15] (ICCV17) 85.4 97.6 99.4
Spindle [25] (CVPR17) 88.5 97.8 98.6
PDC [53] (ICCV17) 88.7 98.6 99.2
JAL 87.4 97.7 98.7
JALo 88.8 98.2 99.5
JALo+aug16 89.5 97.8 99.1

TABLE IX
SINGLE SHOT PERFORMANCE COMPARISON OF DIFFERENT METHODS ON

CUHK03 DETECTED DATASET. WE HIGHTLIGHT THE TOP-5 PERFORMERS
ACCORDING TO CMC TOP1.

Method Top1 Top5 Top10
FPNN [11] (CVPR14) 19.9 50.0 64.0
IDLA [37] (CVPR15) 45.0 76.0 83.5
LOMO [2] (CVPR15) 46.3 78.9 88.6
SS-SVM [54] (CVPR16) 51.2 81.5 89.9
DNS [50] (CVPR16) 54.7 84.8 94.8
DCF [24] (CVPR17) 68.0 91.0 95.4
SSM [51] (CVPR17) 72.7 92.4 96.1
MuDeep [55] (ICCV17) 75.6 94.4 97.5
PDC [53] (ICCV17) 78.3 94.8 97.2
DLPA [15] (ICCV17) 81.6 97.3 98.4
JAL 84.8 97.0 97.9
JALo 86.9 97.4 98.5
JALo+aug16 88.4 97.3 98.4

which are all state-of-the-art methods we can find in literature.

As shown in Tab. X, our model achieves much better perfor-
mance than other methods. The proposed JALo obtains 82.5%
Rank-1 accuracy and 66.9% mAP, respectively. The DPFL [35]
method fuses multi-scale information by combining multiple
sub-networks in the training stage. In contrast, our model is
trained only on DukeMTMC-ReID with a single ResNet50.
The Fig. 7 shows some retrieval examples on the DukeMTMC-
ReID dataset. In the second row, the person in the wrongly
retrieved images has similar clothing to the person in the query
image. The third row is a very challenging example, as all the
persons wear similar bright green backpacks.

Fig. 7. Retrieval examples on DukeMTMC-ReID dataset using the proposed
method. The images in the first column are the query images. The top-10
retrieved images are sorted according to the similarity scores from left to
right. Gallery images captured from the same camera view as query images
are already excluded from the ranking list. The correct matches are in the
green rectangles, and the false matching images are in the red rectangles.

TABLE X
SINGLE SHOT PERFORMANCE COMPARISON OF DIFFERENT METHODS ON

DUKEMTMC-REID. WE HIGHLIGHT THE TOP-5 PERFORMERS
ACCORDING TO MAP.

Method Top1 mAP
BoW+KISSME [9] (CVPR15) 25.1 12.2
LOMO [57] (CVPR15) 30.8 17.0
APR [56] (ArXiv17) 70.7 51.9
GAN [48] (ICCV17) 67.7 47.1
PAN [26] (CVPR17) 71.6 51.5
SVDNet [14] (ICCV17) 76.7 56.8
DPFL [35] (ICCVW17) 79.2 60.6
JAL 80.6 65.6
JALo 82.5 66.9
JALo+aug16 83.0 67.8

V. CONCLUSION

In this paper, we proposed a homocentric hypersphere
feature embedding learning approach for Person ReID task.
In our homecentric hypersphere framework, the class center
vectors and the features were normalized to two individual
homocentric hyperspheres with the same coordinate origin.
Based on the homecentric hypersphere assumption, we refor-
mulated the classification loss and the triplet loss into their
corresponding angular versions, and thus provided a natural
way to jointly consider both losses to minimize the angle
between intra-class features, maximize the angle between
inter-class features and minimize the angle between features
and their corresponding class center vectors. To reduce the
redundancy in the embedding layers’ weights, we placed or-
thogonal regularizations on embedding layer. Detailed analysis
and extensive experiments were conducted on three widely
used data sets to validate the effectiveness of our approach for
Person ReID. The results showed that our approach achieves
state-of-the-art performance on all benchmarks by using the
same hyperparameters.
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