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ABSTRACT
This work proposes a novel restoration model for optical coher-

ence tomography (OCT) data. The authors have been developing
a multi-frequency swept (MS) en-face OCT device that can help
understand the mechanism of the sensory epithelium in the cochlear.
Although the device has merit in acquiring moving tissues, the
broadened light gives a weak response; thus, some signal restora-
tions are demanded. This work proposes the introduction of a
formulation for OCT data restoration as a convex optimization prob-
lem by assuming a latent refractive index distribution. An algorithm
to solve the problem with the primal-dual splitting (PDS) framework
is then derived. The PDS has an advantage of requiring no inverse
matrix operation and being able to handle high-dimensional data.
The significance of the proposed model is verified by simulations on
artificial data, followed by an experiment with the actual observation
of 256× 256× 2000 voxels.

Index Terms— Refractive index distribution, primal-dual split-
ting method, volumetric data, sparse modeling, MS en-face OCT

1. INTRODUCTION

The progress of sensing technology in extreme environments is in-
dispensable for the development of science and medicine. As well as
hardware devices, physical models and signal processing algorithms
need to cooperate together. To measure the vibration of the sensory
epithelium in vivo and contribute to the treatment of deafness, we
are developing an MS en-face optical coherence tomography (OCT)
device that instantaneously captures the XY plane and acquires a to-
mographic image by optically scanning the Z direction [1]. Fig. 1
briefly shows the MS en-face OCT device configuration.

OCT is a tomographic technique with a spatial resolution in a
few µm scale using a near infrared laser [2]. The structure of a tar-
get object is measured by the interference between the reference light
and the one reflected by the object. Typical OCT techniques, such as
Doppler spectral domain (SD) OCT [3–6], acquire tomographic data
in the Z direction at a point in the XY plane, and need mechanical
2D scanning in the X and Y directions to construct 3D volumetric
data. Compared with others, MS en-face OCT has an advantage of
being able to observe a dynamic tomographic structure [7]. How-
ever, light is broadened by the interference microscope; hence, the
light intensity to the image sensor becomes quite weak. As a result,
the acquired interference is prone to hide in severe noise.

The denoising of the OCT volumetric data is modeled as a sig-
nal restoration problem. In [8], we proposed a denoising method for
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Fig. 1. The MS en-face OCT device uses a broadband super-
luminescent diode (SLD) light source, where a Fabry-Perot res-
onator is used to generate a multi-wavelength optical comb. The
interference peak position is scanned in the Z direction by control-
ling the frequency interval of the spectrum comb with a piezo actu-
ator. The optical comb is divided into a reference and sample beam
by the beam splitter. The field of view is enlarged by the objective
lenses, and the reflected lights are formed on the CMOS sensor. The
interference between the reference and the sample beam is acquired.

the OCT data with the iterative hard-thresholding algorithm. Refer-
ence [9] proposes a super-resolution technique for retina SD-OCT
to shorten the acquisition time. Moreover, [10] proposes a speckle
denoising method for retina SD-OCT. However, none of the above-
mentioned techniques considered the measurement process (i.e., ob-
servation through the interference).

In [11], we proposed a method based on the primal-dual plug-
and-play (PDPnP) method [12] to restore the OCT data by con-
sidering the measurement process and the range of reflection ratio.
PDPnP relies on the PDS algorithm [13, 14], and has an advantage
of requiring no inverse matrix operation. Meanwhile, the alternating
direction method of multipliers (ADMM) [15,16], which is a popular
alternative of the PDS algorithm [17], works with matrix inversion.
Although the PDS requires a relatively large number of iterations, it
is highly versatile and suitable for processing high-dimensional data
such as tomographic images.

In this work, we propose the modification of the problem set-
ting in [11] under the condition that PDS still works. The previous
model only considers the structure of the reflective positions, and
is likely to fail the estimation. The OCT response to a reflective
surface has the shape of a local oscillation similar to the cosine mod-
ulated Gaussian function. Unfortunately, many sparse solutions of
reflective surface combinations yield a similar oscillating response,
which makes it difficult to capture an accurate target structure. In
order to overcome this difficulty by introducing a latent refractive
index distribution to the model because the distribution is related to
the reflective positions and the spatial correlation can be used as an
additional regularization.



Fig. 2. Discrete model of the coherence function defined by (2),
where the amplitude, standard deviation and angular frequency are
set to αp = 8, σp = 8, and ωp = 0.25π, respectively.

2. REVIEW OF THE OCT MEASUREMENT MODEL

In this section, let us review the model of the OCT measurement
process, and discuss its relation to the refractive index distribution.
In the following discussion, we assume that light travels along the
Z-axis.

2.1. Observation model

OCT devices acquire tomographic images using the interference be-
tween the reference and the sample laser beam (Fig. 1). A discrete
model of the OCT observation data {t[n]}n is modeled as follows

t[n] = b[n] +
∑
k∈Ωr

r[k]p[n− k] + w[n], n ∈ Ωv, (1)

where n = [nx, ny, nz]
⊺ ∈ Ωv and k = [kx, ky, kz]

⊺ ∈ Ωr are
the array indexes of 3D volumetric data. Each element corresponds
to the position of horizontal, vertical and depth, respectively [11].
Ωr,Ωv ⊂ Z3 represent the index domains. {b[n]}n represents a bias
or often trend component in the Z direction that is not a contribution
of interference. {w[n]}n denotes the noise component. {p[m]}m
is an interference waveform (i.e., coherence function) representing
the OCT measurement process and has a shape similar to the cosine
modulated Gaussian function. r[k] corresponds to the reflectance
distribution of the target object at position k ∈ Ωr.

Fig. 2 shows an example of the coherence function {p[m]}m
formulated as:

p[m] = αpδ[mx]δ[my] exp

(
−m2

z

2σ2
p

)
cos (ωpmz) , m ∈ Z3,

(2)
where m = [mx,my,mz]

⊺, αp, σp and ωp denote amplitude, stan-
dard deviation and angular frequency, respectively; and δ[m] is the
impulse sequence defined by 1 for m = 0 and 0 for m ̸= 0.

The reflectance distribution {r[k]}k is unknown and should be
restored from the observation {t[n]}n to remove the bias {b[n]}n,
noise {w[n]}n and local oscillation by {p[m]}m. Among these
degradation factors, the Z direction bias component {b[n]}n is rel-
atively easy to get rid of by a high-pass filter. Thus, we adopt the
following as a restoration target:

v[n] = t[n]− b[n], n ∈ Ωv. (3)

2.2. Reflectance and refractive index

Reflectance is related to refractive index. The reflection ration R at
a boundary of different refractive indexes is obtained as follows:

R =
|n1 − n2|(n1 − n2)

(n1 + n2)2
, n1, n2 ∈ [0,∞), (4)

where n1 and n2 are the refractive indexes of a light incident side and
the opposite side, respectively. In (4), the phase shift is also consid-
ered, where the sign is determined by their relation. The refractive

indexes of the bio-tissues are assumed to have a spatial correlation
and be in the range around 1.00 to 1.50.

3. PROPOSED RESTORATION MODEL

Let us propose a novel model to restore the reflectance distribution
{r[k]}k from the observation data {v[n]}n by using the relation to
a latent refractive index distribution.

3.1. Observation model of the OCT device

We consider a latent refractive index distribution {u[k]}k as
the source array for the OCT observation {v[n]}n. Now, let
u ≜ vec({u[k]}k) ∈ RN , r ≜ vec({r[k]}k) ∈ RN , v ≜
vec({v[n]}n) ∈ RM and w ≜ vec({w[n]}n) ∈ RM , i.e., the
vector representations of the latent source, estimation target, obser-
vation and noise, respectively, where N = |Ωr| and M = |Ωv|.
For these vector notations, the system with a coherence function
{p[m]}m is represented by matrix P ∈ RM×N . From (1) and (3)
with the domain constraint, the observation model is represented as
follows:

v = Pϕ(u) +w, s.t. u ∈ [a, b]N , a, b ∈ R, (5)

where u is a distribution of the latent refractive index; [a, b]N de-
notes the range of u and ϕ : [0,∞)N → (−1, 1)N maps the refrac-
tive index to that of the reflectance according to the relation in (4)
(i.e., r = ϕ(u))1. As in [11], we can further assume the generation
process of the latent distribution u by a certain synthesis dictionary
D ∈ RN×L and a coefficient vector s ∈ RL as

u = Ds. (6)

An advantage of this new model is that hierarchical sparsity regular-
ization can be applied for r and s with a hard constraint on u.

From (4), a definition of ϕ(·) is given as

ϕ(u) = −diag(abs(∆z)u)
−2diag(abs(∆zu))∆zu (7)

where ∆z ∈ RN×N is a difference operator in the Z-direction.

3.2. Problem setting of the OCT data restoration

As for ∆z in (7), this work adopts the following convolutional op-
erator with the impulse response

dz[m] ≜ Z−1 {(zx + 2 + z−1
x )(zy + 2 + z−1

y )(zz − z−1
z )/32

}
,

which is an extension of 2D Sobel operator to 3D, where Z−1{·}
means the 3D inverse Z-transform. Note that ∆⊺

z = −∆z and
abs(∆⊺

z ) = abs(∆z) hold, where superscript ”⊺” denotes its ad-
joint.

Assuming sparseness on ∆zu, instead of r = ϕ(u), as well as
s, the problem setting is formulated as follows:

ŝ = arg min
s∈RL

1

2
∥Pϕ(Ds)− v∥22 + λ∥s∥1 + η∥∆zDs∥1,

s.t.Ds ∈ [a, b]N , (8)

where ∥ · ∥2 and ∥ · ∥1 are the 2-norm and the 1-norm, respec-
tively; a, b ∈ [0,∞) are the lower and upper bounds of u; and
λ, η ∈ [0,∞) denote the regularization parameters. The reflectance
distribution r is estimated as r̂ = ϕ(Dŝ).

1Note that (5) is mathematically reduced to the model in [11] when ϕ(·)
is identity and [a, b]N = [−1, 1]N .



Algorithm 1 Primal-dual splitting (PDS) algorithm [13]

Input: x(0), y(0)

Output: x(n)

1: while A stopping criterion is not satisfied do
2: x(n+1) = proxγ1g

(
x(n) − γ1(∇f(x(n)) + L⊺y(n))

)
3: y(n+1) = proxγ2h∗

(
y(n) + γ2L(2x

(n+1) − x(n))
)

4: n← n+ 1
5: end while

Algorithm 2 PDS for solving the problem in (8)

Input: x(0), y(0)
1 , y(0)

2

Output: x(n), q(n)

1: q(0) = Dx(0)

2: while A stopping criterion is not satisfied do
3: t← D⊺(∇F(q(n)) +∆⊺

zy
(n)
1 + y

(n)
2 )

4: x(n+1) = Gλ∥·∥1(x
(n) − γ1t, γ

1
2
1 )

5: q(n+1) = Dx(n+1)

6: u← 2q(n+1) − q(n)

7: y
(n)
1 ← y

(n)
1 + γ2∆zu

8: y
(n)
2 ← y

(n)
2 + γ2u

9: y
(n+1)
1 = y

(n)
1 − γ2Gη∥·∥1(γ

−1
2 y

(n)
1 , γ

− 1
2

2 )

10: y
(n+1)
2 = y

(n)
2 − γ2P[a,b]N (γ−1

2 y
(n)
2 )

11: n← n+ 1
12: end while

3.3. Linear approximation of ϕ(·)

Although the original ϕ(·) in (7) is differentiable, it is non-linear
and violates the convexity of the problem in (8). Thus, we propose
to linearly approximate ϕ(·) for the domain assumed to the refractive
index. Our linear approximation of ϕ(·) is as follows:

ϕ1(u) = −β1(a, b)∆zu, (9)

where β1(a, b) = 2|b− a|/(b+ a)2 is derived from (4) and the
gain of {dz[m]}m in the Z-direction. Equation (9) guarantees that
the response is null when n1 = n2 and r = ϕ1(u) ∈ (−1, 1)N .

The derivative of ϕ1(·) with respect to u is given as

∂ϕ1

∂u
= −β1(a, b)∆z = β1(a, b)∆

⊺
z , (10)

where [∂f/∂x]n,m ≜ ∂[f ]n/∂[x]m. [·]n and [·]n,m denote the nth
element of the vector and the n,mth element of the matrix, respec-
tively.

3.4. Restoration algorithm

Let us adopt the PDS algorithm to solve the problem in (8). The
algorithm can solve problems in the following form:

x̂ = arg min
x∈RL

f(x) + g(x) + h(Lx), (11)

where f : RL → R ∪ {∞}, g : RL → R ∪ {∞} and h : RK →
R ∪ {∞} are the proper lower semi-continuous convex functions;
∇f(·) is the µ-Lipschitz continuous; and L ∈ RK×L.

Algorithm 1 shows the steps of the PDS [13]. Symbols γ1 and
γ2 are the step size parameters set to satisfy γ−1

1 −γ2(σmax(L))
2 ≥

µ/2, where σmax(L) is the maximum singular value of L [13].

(a) (b) (c)

Fig. 3. Example set of the artificial volumetric arrays. (Top) YZ slice
at the center of X. (Bottom) Z direction sequence at the center of the
XY plane. (a) Latent refractive index distribution u of 16× 64× 64
voxels, where the phantom function of MATLAB R2018a is used
with the option ”Modified Shepp-Logan”. The intensity is scaled
to the range between a = 1.00 and b = 1.50. The YZ slice is
replicated to the X direction. (b) Reflective distribution r derived
from u by using the mapping ϕ(·) in (7). (c) Observation v, where
the function in Fig. 2 is set to the measurement process as P. The
AWGN of the zero mean and standard deviation of 4×10−2 is set as
noise w. The green and red voxels denote the positive and negative
values, respectively.

To apply the PDS algorithm to the problem in (8), let

f(x) = F(Dx) =
1

2
∥Pϕ1(Dx)− v∥22 , (12a)

g(x) = λ∥x∥1, (12b)
h(Lx) = η∥y1∥1 + ı[a,b]N (y2), (12c)

Lx =

[
y1

y2

]
=

[
∆zD
D

]
x. (12d)

We then obtain the PDS steps with the hierarchical sparsity with a
hard constraint (Algorithm 2). If synthesis dictionary D satisfies
the Parseval tightness (i.e., DD⊺ = I [18, 19]), then σmax(L) =
σmax

([
∆z
I

])
holds, where I is the identity matrix. For exam-

ple, orthonormal transforms, namely the undecimated Haar trans-
form (UDHT) [20] and nonseparable oversampled lapped transform
(NSOLT) [21] satisfy the Parseval tight condition.

In Algorithm 2, Gλ∥·∥1(x, σ) and P[a,b]N (x) denote soft-
thresholding and metric projection defined as follows:[

Gλ∥·∥1(x, σ)
]
n
≜ sgn([x]n)max

{
|[x]n| − λσ2, 0

}
, (13)[

P[a,b]N (x)
]
n
≜ min{max{[x]n, a}, b}. (14)

The gradient of F(·) is obtained by the chain rule as

∇F(u) =
(
∂ϕ1

∂u

)⊺
P⊺(Pϕ1(u)− v). (15)

The Lipschitz constant of∇f(·) is µ = (β1(a, b)σmax(P∆zD))2.

4. PERFORMANCE EVALUATION

In this section, let us verify the significance of the proposed model
by simulations on artificial data. We then show the experimental
result for an observation array of the sensory epithelium of a guinea
pig’s inner ear measured by the MS en-face OCT device.



(a) (b) (c)

Fig. 4. Restoration results of the reflectance distribution r. (Top) YZ
slice of reflection at the center of X. (Bottom) Z direction sequence
at the center of the XY plane. (a) Previous method using D = I
and BM4D in [11], where MSE=3.82× 10−5. (b) Proposed method
using D = I and BM4D in Step 4, where MSE: 2.26 × 10−5. (c)
Proposed method using UDHT as D and soft-thresholding in Step 4,
where MSE: 2.26 × 10−5. The array in Fig. 3 (c) is used as ob-
servation v. The parameters are set as γ1 = 3.0941 × 10−4 and
γ2 = 76.1905. ♯ of iterations is set to 1000.

(a) (b)

Fig. 5. MSE validation for sparse regularization parameters λ and
η. (a) Proposed method using D = I and BM4D in Step 4. (b)
Proposed method using UDHT as D and soft-thresholding in Step 4.

4.1. Restoration simulation

We verify the significance of the proposed method in (8) by compar-
ing the restoration result with that of the previous method in [11],
where, for reference, we also show the result of using BM4D [22] as
a regularized Gaussian denoiser in Step 4 in a similar way to [11,12].
Figs. 3 (a), (b) and (c) illustrate the artificial refractive index distri-
bution u, reflectance distribution r, and an observation v measured
through the coherence function shown in Fig. 2, respectively.

The simulation configuration is as follows:

• Combination of dictionary D and Gaussian denoiser GR(·, σ):

– Identity map (D = I) and BM4D [22]
– 3D UDHT [20] and soft-thresholding in (13)

• Step-size parameters:

– γ1 = 2/(1.05µ) ≈ 3.0941× 10−4

– γ2 = (1.05ξ)−1(1/γ1−µ/2), where ξ = (σmax(L))
2

• The number of iterations is set to 1000.

Note that σmax(L) =
√

λmax(∆
⊺
z∆z) + 1 for a Parseval tight dic-

tionary D, where λmax(·) denotes the maximum eigenvalue.
Figs. 4 and 5 show the restoration results and the MSE valiation

for sparse regularization parameters λ and η. Fig. 4 (a) depicts the
result of the previous model in [11]. Figs. 4 (b) and (c) represent the
result using BM4D and that using UDHT and soft-thresholding, re-
spectively, where λ and η are selected as the best values from Fig. 5.

Fig. 6. Observation v of the sensory epithelium of a guinea pig’s
inner ear measured by the MS en-face OCT device. (Left top) YZ
slice at the center of X. (Left bottom) Z direction sequence at the
center of XY. (Right) 3D representation of size 256 × 256 × 2000
voxel corresponding to physical dimension of 1 × 1 × 0.15mm3.
The output of the average filter of length 21 is subtracted from the
original as a pre-processing to remove the Z direction bias or trend
component.

Fig. 7. Restored result r̂ = ϕ1(Dŝ) using UDHT as D, where
the intensity is emphasized. (Left top) YZ slice at the center of X.
(Left bottom) Z direction sequence at the center of XY. (Right) 3D
representation. ♯ of iterations is set to 1000.

Fig. 4 (b) and (c) show a better performance compare to the
previous method in (a) and almost the same performance as each
other. The combination of UDHT and soft-thresholding is faster
than BM4D. The effect of introducing the regularization and con-
straint for the OCT model is confirmed.

4.2. Restoration experiment

Let us adopt the proposed method with the combination of UDHT
and soft-thresholding. Fig. 6 shows an observation of the sensory
epithelium of a guinea pig’s inner ear measured by an MS en-face
OCT device. Fig. 7 exhibits the restoration result, where the model
in Fig. 2 was experimentally set for the observation process P, and
the setting similar to the simulation in Section 4.1 is adopted. The
data size is 256×256×2000 voxels, which corresponds to a physical
dimension of 1× 1× 0.15 mm3.

The proposed method is capable of handling high-volume OCT
data with a high quality restoration performance.

5. CONCLUSIONS

This study proposed the introduction of a latent refractive distri-
bution for the OCT volumetric data restoration. We reduced the
restoration problem to a sparsity-aware least square minimization
with a hard constraint and constructed an algorithm to solve the
problem based on the PDS framework. The significance was veri-
fied by the simulations on the artificial data and an experiment on
the actual MS en-face OCT measurement data. Although the main
motivation of this work is to overcome the weakness of the MS en-
face OCT device, the proposed model is also available for the others.
The restoration based on the proposed model is expected to reduce
the laser power of OCT devices, while keeping the acquisition per-
formance.
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