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ABSTRACT

Recently deep learning based image compression has made
rapid advances with promising results based on objective
quality metrics. However, a rigorous subjective quality evalu-
ation on such compression schemes have rarely been reported.
This paper aims at perceptual quality studies on learned com-
pression. First, we build a general learned compression
approach, and optimize the model. In total six compression
algorithms are considered for this study. Then, we perform
subjective quality tests in a controlled environment using
high-resolution images. Results demonstrate learned com-
pression optimized by MS-SSIM yields competitive results
that approach the efficiency of state-of-the-art compression.
The results obtained can provide a useful benchmark for
future developments in learned image compression.

Index Terms— Subjective and objective quality evalua-
tion, learning image compression, compression standards.

1. INTRODUCTION

Image compression has been a popular research topic in the
field of image processing for several decades. Conventional
compression standards such as JPEG [1], JPEG 2000 [2],
and HEVC/H.265 [3] rely on hand-crafted encoder-decoder
(codec) architectures. They use fixed transforms such as dis-
crete cosine transform (DCT) or discrete wavelet transform,
in combination with with uniform quantization and entropy
coder. Despite their substantial compression performance,
the proliferation of high-resolution images and the develop-
ment of novel image formats demand improvements on the
existing compression algorithms towards an optimal solution
for all types of image content.

Deep learning has been successfully applied to image
compression in recent years [4]-[15] in which the autoen-
coder architecture is among those considered. An encoder-
decoder pipeline based on autoencoder is claimed to provide
efficient compression efficiency. Several approaches use gen-
erative adversarial training to achieve extremely low rates
in [4, 5, 6]. Variants are proposed to offer scalable compres-
sion in [7, 8, 9]. More general approaches adopt convolutional
autoencoder (CAE) network with differentiable quantization

Fig. 1: Different artifacts caused by different compression al-
gorithms. kodim21 from Kodak dataset is depicted above as
an example.

and entropy model to achieve end-to-end learning, as re-
ported in [10]-[15]. Promising results have already been
achieved [12].

Most techniques only report their performance in terms
of objective quality metrics, e.g. PSNR or MS-SSIM [16].
Very few, however, have put emphasis on evaluating their
performance based on subjective quality assessments. An
example is the work in [17] which relies on small images
(736 × 960) not necessarily fit for the current trend in high-
resolution imaging applications. A particularly important ob-
servation is that learned compression brings new types of ar-
tifacts that differ from blocking or ringing artifacts created
by traditional codecs, as illustrated in Fig. 1. One observes
that shape of clouds in the above illustration tend to be well-
preserved in learned compression while clear artifacts can be
seen in traditional coding approaches. However, the rock dis-
torted by learned compression looks unnatural while the rock
reconstructed by traditional codecs look more realistic. The
impact of artifacts produced by learned image compression
on human perception are still unknown. Therefore, a study
on perceptual quality of learned image compression is essen-
tial in order to achieve further progress in this direction.

Our contributions in this paper are two-fold. First, we
carefully design a generic learned image compression ap-
proach. Different objective quality losses are used to opti-
mize our models as in many prior efforts in the sate of the
art. Second, we conduct subjective quality assessments to
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Fig. 2: Proposed learned image compression approach.

compare the performance of six representative compression
algorithms. Subjective quality evaluation results demonstrate
that the learned compression algorithm optimized by MS-
SSIM yields competitive results with state-of-the-art image
compression. More importantly, we gain valuable insights on
the future developments for learned compression.

2. CODEC ARCHITECTURE

We build a general learned compression based on a convo-
lutional autoencoder (CAE) [14], shown in Fig. 2, where Q
represents quantization, and AE and AD represent the arith-
metic encoder and arithmetic decoder, respectively. The anal-
ysis and synthesis transforms can be decomposed into down-
sampling and upsampling units, where a downsampling unit
is composed of two convolution filters. The upsampling unit
has the same structure with the convolution filters replaced
by deconvolution filters. Each filter has a kernel size of 3
and 128 output channels. The latent representation y has the
dimension of H

2n × W
2n × K where the n is the number of

down(up)sampling units and K is the number of channels be-
fore quantization. In our experiments, we set n = 3, K = 48.
We use factorized entropy model [12], which is proved to
be efficient to model any arbitrary distribution. It produces
a context model and generates an estimated entropy to serve
for AE and AD. For testing, we use the JPEG 2000 entropy
coder to generate compressed bitstreams.

The loss function is defined similar to rate-distortion op-
timization (RDO) in traditional codecs, defined by

J(θ, φ;x) = λD(x, x̂) +R(ŷ) (1)

where λ controls the trade off between the rate and distortion.
R represents the number of bits to encode the quantized com-
pressed data ŷ. θ and φ are optimized parameters at the en-
coder and decoder sides. D represents the distortion between
original x and reconstructed image x̂, and can be estimated
by any objective quality metrics. The reconstruction quality
of learned compression heavily relies on the quality metrics
in the loss function. The two most popular ones are

D(x, x̂) = (1− MS-SSIM(x, x̂)) (2)

Fig. 3: Performance of recent works on Kodak dataset.

or

D(x, x̂) =
1

n

n∑
i=1

(x− x̂)2 (3)

The model was optimized using Adam [18] with a batch size
of 16 up to 106 iterations. The learning rate was set at a fixed
value of 1× 10−4. We have tested models trained using MSE
and MS-SSIM loss to investigate the effect of quality metrics.

In order to cope with high-resolution images, they are split
into tiles and each coded individually. After decoding, tiles
are either stitched together as they do not overlap, or com-
bined by weighted averaging of their boundary regions that
overlap. We used a 32 pixel overlap as a compromise between
redundancy and reduction of blocking artifacts between tiles.
Fig. 3 depicts the performance of the proposed autoencoder
codec in terms of MS-SSIM when compared to other state-
of-the-art codecs on Kodak dataset.

The most recent JPEG XL call for proposals [20] was used
for anchor generation and resulted in a total of 6 codecs to be
considered as in Table 1.

3. SUBJECTIVE QUALITY EVALUATIONS

3.1. Dataset

For this study, we selected 7 uncompressed 8-bit RGB test
images in high-resolutions (HD to UHD), following the latest
JPEG XL Call for Proposals [20], as shown in Fig. 4. The
codecs were evaluated on four target bitrates R1 to R4, corre-
sponding to very low to high bitrates, which were determined
during expert sessions as described in [20]. For image com-
pression standards, we selected quantization parameters (QP)
to match the target bitrates. For our proposed learned com-
pression scheme, we adjust λ in Eq.(1) to train models and
achieve target bitrates.

3.2. Test Methodology

The methodology is based on Absolute Category Rating with
Hidden Reference (ACR-HR) [24] where only one image is
displayed in the center of the screen at a time. Participants
were required to rate the visual quality based on a five-level



Table 1: Codecs considered in this paper.

Codec Specification and reference software
CAE-MSE-ov Convolutional autoencoder optimized by MSE, stitched in an overlapped manner
CAE-MS-SSIM-nonov Convolutional autoencoder optimized by MS-SSIM, stitched in a non-overlapped manner
CAE-MS-SSIM-ov Convolutional autoencoder optimized by MS-SSIM, stitched in an overlapped manner
HEVC/H.265 ISO/IEC 23008-2—ITU-T Rec. H.265, Software: HM16.18+SCM-8.7, Intra [21]
JPEGXT ISO/IEC 18477, Software: JPEG XT v1.53 [22]
JPEG2000 ISO/IEC 15444-1—ITU-T Rec. T.800, Software: Kakadu v7.10.2 [23]

(a) APPLE (b) ARRI (c) BIKE (d) CAFE (e) FemaleStripedHorseFly (f) P06 (g) Woman

Fig. 4: Test images in this study.

scale, i.e., Excellent (5), Good (4), Fair (3), Poor (2), Bad
(1). The whole evaluation consisted of 168 stimuli, namely 6
codecs, 7 contents and 4 bitrates. The display order was ran-
domized so that the same content was never displayed consec-
utively. The test was split into two sessions to avoid subjects
fatigue. Prior to testing, a training was performed to familiar-
ize subjects with the typical artifacts and the rating scale.

To avoid the involuntary influence of external factors and
to ensure the reproducibility of results, a controlled environ-
ment with mid-gray background for subjective quality assess-
ment was preferred according to [25]. An Eizo ColorEdge
CG318-4K monitor with native resolution of 4096×2160 pix-
els was used for tests. The background of the display was set
to mid grey [26]. The display brightness was calibrated at 120
cd/m2 and background illumination was set to 15 lux. A total
of 16 participants (10 males and 6 females) took part in ex-
periments, with an age between 19 and 38 years old, with an
average of 26.4 and a median of 27.

4. RESULTS AND DISCUSSION

For the evaluation of perceived quality, outlier detection was
performed using the approach in [25] and no outlier was de-
tected. The mean opinion score (MOS) was computed for
each stimulus as

MOSj =
1

N

N∑
i=1

mij (4)

where mij is the score for stimulus j given by subject i and
N is the total number of participants. 95% confidence inter-
vals (CIs) were computed assuming a Student’s t-distribution
of the scores. Fig. 5 shows the MOS vs. bitrate curves for

4 typical contents. MOS of the hidden reference with corre-
sponding CI are depicted with a yellow stripe, whereas all the
codecs are plotted with a solid line. To determine whether the
results yield statistical significance, a two-sided Welch test at
5% significance level was performed on the scores.

Fig. 6 shows for how many contents the codec on the y-
axis performs significantly better than the codec on the x-axis
for each bitrate. The minimum value is 0 and the maximum
value is 7, corresponding to the total number of test contents.
Some of the codecs could not reach all target bitrates (espe-
cially the lowest) within reasonable deviation due to limited
and integer quantization parameter. To ensure fair compari-
son, we excluded the lowest bitrates and conducted the pair-
wise comparison only when the bitrate difference between ac-
tual bitrate and target bitrate was less than a predefined thresh-
old specific to each targeted bitrate.

Fig. 6 shows that HEVC/H.265-intra outperforms all
codecs for all bitrates and all contents except for con-
tent Woman at R2, where CAE-MS-SSIM-ov outperforms
HEVC/H.265-intra. This implies a better reconstruction
quality for learned image compression approach for face con-
tents. This result is expected as optimizing MS-SSIM leads
to better structural similarity and human visual system is sen-
sitive to human faces. Overall, CAE-MS-SSIM-ov achieves
the second best performance, as it is statistically comparable
with HEVC/H.265-intra at R2, but a little worse at R3 and
R4.

We can also conclude some useful information for learned
image compression. First, comparing CAE-MS-SSIM-ov
and CAE-MS-SSIM-nonov shows that the performance of
the overlapping stitching strategy is superior to the non-
overlapping case. More interestingly, CAE-MS-SSIM-ov
outperforms CAE-MSE-ov on 3, 2 and 1 out of 7 contents at



(a) APPLE (b) CAFE (c) P06 (d) Woman

Fig. 5: Results of MOS vs. bitrate with corresponding confidence interval.

(a) R2 (b) R3 (c) R4

Fig. 6: Pairwise Comparison for each bitrate, where for “n/m” in each cell, m denotes how many contents are comparable for
each pairwise comparison, and n denotes how many times the codec on y-axis outperforms the codec on x-axis.

(a) MS-SSIM (b) PSNR

Fig. 7: Performance with respect to MS-SSIM and PSNR.

R2, R3 and R4, respectively. On the contrary, CAE-MSE-ov
outperforms CAE-MS-SSIM-ov only on 1 out of 6 contents at
R4. We have observed that to achieve higher subjective qual-
ity at low bitrates, MS-SSIM works better than MSE, while
at high bitrates, MS-SSIM and MSE do not show significant
differences.

Furthermore, we calculate the PSNR and MS-SSIM re-
sults to illustrate the difference between subjective and objec-
tive quality evaluations. To obtain a fair comparison, we use
averaged PSNR on RGB components, defined by

PSNR = 10 log10

(
2552 × 3

MSER +MSEG +MSEB

)
(5)

The MS-SSIM calculation refers to [16]. Fig. 7 shows the
averaged results on 7 contents. It can be observed that
CAE-MS-SSIM-ov achieves the best MS-SSIM performance,
which outperforms HEVC/H.265-intra significantly. In terms
of PSNR, CAE-MSE is comparable to JPEG 2000, but worse
than HEVC/H.265-intra. Both results correlate poorly with
subjective qulaity evaluation results, which illustrates the
need for a better perceptual similarity metric to improve the
performance of learned based compression.

5. CONCLUSION

This paper presents a perceptual quality assessment study on
the performance of learned image compression. First, we in-
troduced a generic learned image compression approach and
optimized it with two separate quality metrics. We consid-
ered (non)overlapping tiles to tackle memory limitations for
high-resolution images. A total of six compression algorithms
were involved in subjective quality assessment tests and high-
resolution images were selected carefully, in line with state-
of-the-art codec comparisons. We then conducted the subjec-
tive tests in a controlled environment by adopting an ACR-HR
methodology. Results demonstrate learned compression opti-
mized by MS-SSIM achieved competitive results with state-
of-the-art codecs. We also observed the advantages of opti-



mization with respect to MS-SSIM at low bitrates when com-
pared to PSNR for learned image compression. Our study
presents a thorough quality evaluation methodology that cor-
relates well with human subjects opinion.
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