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ABSTRACT

We propose a convolutional neural network (CNN) architec-
ture for image classification based on subband decomposition
of the image using wavelets. The proposed architecture de-
composes the input image spectra into multiple critically sam-
pled subbands, extracts features using a single CNN per sub-
band, and finally, performs classification by combining the
extracted features using a fully connected layer. Processing
each of the subbands by an individual CNN, thereby lim-
iting the learning scope of each CNN to a single subband,
imposes a form of structural regularization. This provides
better generalization capability as seen by the presented re-
sults. The proposed architecture achieves best-in-class per-
formance in terms of total multiply-add-accumulator opera-
tions and nearly best-in-class performance in terms of total
parameters required, yet it maintains competitive classifica-
tion performance. We also show the proposed architecture is
more robust than the regular full-band CNN to noise caused
by weight-and-bias quantization and input quantization.

Index Terms— CNN; wavelet-based subband decompo-
sition; image classification; regularization

1. INTRODUCTION

Deep learning has resulted in state-of-the-art performance in
image recognition and vision tasks. Most of these achieve-
ments can be attributed to the use of convolutional neural
networks (CNNs) [1]. Since then, several other improve-
ments to the CNN architecture have been proposed, including
AlexNet [2], VGG [3], GoogleNet [4], ResNet [5], Spatial
Pyramid Pooling [6], SqueezeNet [7], and more.

The increasing complexity of CNNs poses challenges to
state-of-the-art implementations. There are numerous tech-
niques to reduce the computational cost of CNNs. Pruning
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of filters to simplify a CNN was proposed in [8]. Another
approach that used sparsity to reduce the number of filters
per channel and per stage of a CNN was introduced in [9].
SqueezeNet was introduced in [7] that claimed 50× fewer
parameters than AlexNet, by using 1 × 1 convolutional fil-
ters and reducing the overall number of parameters. Another
work on model compression was introduced by [10]. A char-
acteristic shared by most of these methods is that they can be
reduced architecture-wise to special cases of the base CNN
introduced in [2].

Deep networks require several layers of weights to be
trained and even with millions of training data samples, over-
fitting remains inevitable [11]. Some recent techniques to
combat overfitting include data augmentation [2], weight
regularization [12], dropouts [2], and adaptive regularization
of weight vectors [12]. There is also a notion of structural
regularization, wherein constraints are imposed on the net-
work structure rather than on the weight updates to limit
overfitting [13]. Several works focus on this approach. A
jointly enforced global wavelet domain sparsity constraint
together with a learned analysis sparsity prior was introduced
in [14]. A wavelet-regularized semi-supervised learning algo-
rithm using suitably defined spline-like graph wavelets was
introduced in [15]. In a recent work, a method of Graph-
Spectral-Regularization was introduced in [16].

Multi-resolution analysis using wavelets was introduced
by Daubechies [17]. It is well known that decomposing
an image into subbands using wavelets is advantageous for
image analysis. Not surprisingly, wavelets have been used
with CNNs in several works. In [18], a single layer CNN
was proposed in which the convolution kernel was wavelet-
based. The model could not utilize the subbands from a
regularization perspective and did not present an automated
learning strategy as in deep learning. Another approach [19]
used wavelet decomposition for hierarchical image recon-
struction to analyze CT scan images. A similar work on
multi-resolution analysis with wavelets and CNNs was pre-
sented in [20]. The use of a scattering network as a generic
and fixed initialization of the first layer in a CNN achieved
similar results compared to learning the weights of the first
layer was seen in [21].

In this paper, and in the context of image classification,
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we leverage subband decomposition to introduce a new struc-
turally regularized CNN architecture wherein multiple CNNs
are used to process the input image at different spatial scales
as represented by the critically sampled and equally band-
limited subbands obtained through a wavelet decomposition.
The new architecture represents a departure from the ones
used in the above-mentioned methods, where a single CNN
was used to process the complete multi-scale wavelet output.
As we will see through qualitative arguments and extensive
experimental studies the proposed architecture exhibits char-
acteristics that translate to significant computational and clas-
sification performance advantages.

2. PROPOSED ARCHITECTURE

The proposed architecture termed Subband Regularized CNN
(SRCNN) is presented in Figure 1. In the first stage, the in-
put image is decomposed into subbands through a 2D dis-
crete wavelet transform (2D-DWT). The SRCNN architecture
is based on processing each of the subbands separately by in-
dividual CNNs. The field of view of each CNN is hence re-
stricted to a dedicated subband, making each CNN indifferent
to the rest of the subbands. Importantly, this subband decom-
position structure reduces the overall computational cost.

We represent the complete decomposition of the input im-
age Xin into K subbands by:

(X1
0 , . . . , X

K
0 ) = DWT(Xin ,K,M) (1)

where M is the number of DWT layers, K is the number of
subbands, and Xk

0 (k = 1, . . . ,K) are the DWT coefficients
for the kth subband. We have chosen the Daubechies (D2)
family of basis functions for DWT [22]. This constitutes the
simplest Daubechies wavelet basis, with a single vanishing
moment. Being symmetric, they offer linear phase charac-
teristics and do not suffer from edge effect characteristics of
higher order wavelets [22].

The SRCNN architecture in Figure 1 is a generalized
structure. The exact configuration of the architecture imple-
mented in this paper is given in Table 1. The input image is
first decomposed into K subbands as described by Equation
1. The subbands are then individually passed through their
corresponding CNNs. Finally, the fully connected (FC) lay-
ers combine the feature outputs of the subband CNNs and
perform image classification. The output of the CNN at the
kth subband and ith layer is given by:

Xk
i+1 = Pool(ReLU(Conv(Xk

i , W
k
i ), Li

k), Pi
k) (2)

where Conv represents the convolution between the inputXi
k

of the ith layer and the weights Wi
k. ReLU(·) indicates the

ReLU activation function with Li
k representing the leakage

percentage value [23] which is a real number between 0 and 1.
Pool(·) represents the pooling function with pooling parame-
ters Pi

k. The outputs of the subband CNNs are accumulated

to yield XFC0 which is the input to the first FC layer:

XFC0 = (XI
1, . . . , XI

K) (3)

where I is the number of layers in the subband CNNs. The
output at each FC layer is given by:

XFCn+1 = ReLU(W FCn · XFCn , LFCn) (4)

where XFCn denotes the output of the nth FC layer, · indi-
cates matrix multiplication and LFCn indicates ReLU leakage
value. Finally, the output of the last FC layer XFCN , indexed
by N , produces the SRCNN’s output Y . Equations 1 to 4 de-
scribe the complete input to output relation of the proposed
subband based CNN.

3. PROPERTIES OF THE ARCHITECTURE

The proposed architecture emphasizes regularization through
its structure, thus it is structurally regularized. To enhance
regularization effectiveness, the decomposed subbands are
critically sampled and band-limited before being processed
by individual subband CNNs. Each of the subband CNNs is
inhibited from accessing information across the entire spec-
trum of the input. Overall, each of the CNNs cannot learn
sample-specific features present in the entire spectrum of
the input. This restriction combined with weight regular-
ization within each CNN, improves regularization, leading
to better generalization ability and reduced overfitting, as
demonstrated by the accuracy performance comparison in
Table 2. Apart from accuracy, the difference in Top-5 and
Top-1 accuracy result can be considered as an indicator for
generalization effectiveness. A lower difference value indi-
cates better generalization which, in our case, outperforms
other state-of-the-art networks.

The lossless decomposition of the input spectrum into or-
thogonal subbands allows isolated analysis of the spatial rep-
resentation of each subband. This is beneficial in the case of
corrupted images. Indeed, corruption of the input image by
noise, deformities from lens aberration, incorrect exposure,
low lighting, etc., does not affect the entire spectrum equally;
in reality, some subbands are corrupted more. Isolating the
subbands ensures that the corruption of extracted features is
limited to the affected subbands, as opposed to a full-band
CNN that considers the entire spectrum for feature extraction.

Along similar lines, quantization noise in each weight is
confined within the subband and does not affect the entire
spectrum. In contrast, in a regular CNN, quantization noise in
any weight can potentially corrupt the entire spectrum, since
quantization noise can have large bandwidth. Results indicate
that compared to full-band CNN, SRCNN proves more robust
to weight and input quantization.

The subband decomposition also introduces high degree
of sparsity in the subbands, specifically in the non-basebands
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Fig. 1. Architecture of anM -layer SRCNN, parametrized by input dimensions (a×b×c), number of subbandsK, convolutional
layers per subband I , FC layers N and output classes FCN , all open to optimization. The wavelet transform uses High-Pass
(HP) and Low-Pass (LP) filters, followed by decimation of 2.

containing mostly edge information. This sparsity is intro-
duced at the very input of the subband CNNs. It is well known
that sparse inputs help reduce CNN complexity [9].

Random initialization of weights when training a full-
band CNN does not guarantee scanning of the entire spec-
trum for useful features. In the proposed structure, the CNNs
focus only on their corresponding subbands hence the entire
spectral decomposed into subbands is covered equally.

The decomposition reduces the input spatial dimension
along rows and columns by 2M each, where M is the number
of decomposition layers. The total reduction of input dimen-
sion is effectively on the order of 4M for two-dimensional in-
put data such as images. The convolution operation accounts
for the bulk of computations in a CNN. The total computation
cost depends super-linearly on the size of the convolution fil-
ters [24] and the sample point counts per dimension, all of
which are significantly reduced in our case.

The subband decomposition architecture offers parallel
computation along each subband. The parallelism also pro-
vides a mechanism to reduce internal memory footprint by
sequentially computing each subband and reusing internal
scratch memory to compute each subband CNN.

Finally, decomposition of input spectra into subbands is a
generalized technique and can be applied to any CNN to im-
prove regularization and thereby improve generalization ca-
pacity and improve overall performance.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Methodology and Training

We use MNIST, CIFAR-10/100, Caltech-101 and ImageNet-
2012 datasets (used by [2]) in our experimentation. We com-
pare the proposed architecture against two benchmarks: (i) a
full-spectrum base CNN (BCNN) model that closely resem-

bles AlexNet [2] and VGG-16 [3]; (ii) the Transform CNN
(TCNN) architecture which shares the same wavelet front-end
as SRCNN, except that the subbands are combined and pro-
cessed by a single CNN with the same number of weights and
layers as BCNN. A single layer, subband decomposed TCNN
(4 subbands) with 3 input color channels will result in a to-
tal input of 12 channels and with 1/2 the length and width of
the original input image. Table 1 shows the parameters of the
models used. To study the effect of learning in subband do-
main, we keep most of the parameters constant across BCNN,
SRCNN and TCNN. We compare the number of MAC oper-
ations, total number of parameters and accuracy with several
well known state-of-the-art CNN architectures.

We train using stochastic gradient descent (SGD) with a
mini batch size of 64, batch normalized, randomly picked im-
ages per mini batch, momentum of 0.9 and weight decay of
0.0005 [2]. The update equations for W k

i are:

W k
i (l + 1) =W k

i (l) + V k
i (l + 1) (5)

V k
i (l + 1) = 0.9V k

i (l)− 0.0005 εW k
i (l)− ε

∂L

∂w

∣∣∣∣
Wk

i (l)

(6)

Here, l is the iteration index, V k
i (l) is the momentum at the lth

iteration and kth subband, ε the learning rate, and ∂L
∂W

∣∣∣
Wk

i (l)

is the average over the lth batch of the derivative of the ob-
jective function with respect to W k

i , evaluated at W k
i (l). We

initialize the learning rate to 0.01 and all biases to 1, while we
initialize the weights by drawing from a Gaussian distribution
with a standard deviation of 0.01.

4.2. Results

Classification Accuracy: Table 3 summarizes the classifica-
tion accuracy results. As we can see, the 1-Layer SRCNN im-
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Table 1. CNN architectural configuration used for BCNN,
TCNN and SRCNN. Every convolutional layer is followed by
a leaky ReLU [23] with 10% leakage value.

Dataset MNIST Or CIFAR-10/100 Caltech-101 Or ImageNet-2012
Architectures BCNN / TCNN / SRCNN BCNN / TCNN / SRCNN
Input Size 28x28x1 Or 32x32x3 224x224x3
SubBand - / 1-Layer / 1-Layer - / 1-Layer / 1-Layer

CONV+ReLu 3x3x1x64 / 3x3x4x64 /
3x3x1x16x4 3x3x3x64 / 3x3x12x64 / 3x3x3x16x4

CONV+ReLu 3x3x64x128 / 3x3x64x128 /
3x3x16x32x4 3x3x64x64 / 3x3x64x64 / 3x3x16x16x4

CONV+ReLu 3x3x128x256 / 3x3x128x256 /
3x3x32x64x4 3x3x64x64 / 3x3x64x64 / 3x3x16x16x4

CONV+ReLu - 3x3x64x64 / 3x3x64x64 / 3x3x16x16x4
CONV+ReLu - 3x3x64x64 / 3x3x64x64 / 3x3x16x16x4
POOL 2-by-2 2-by-2

CONV+ReLu 3x3x256x512 / 3x3x256x512 /
3x3x64x128x4 3x3x64x128 / 3x3x64x128 / 3x3x16x32x4

CONV+ReLu 3x3x512x128 / 3x3x512x128 /
3x3x128x32x4 3x3x64x128 / 3x3x64x128 / 3x3x16x32x4

CONV+ReLu - 3x3x64x128 / 3x3x64x128 / 3x3x16x128x4
CONV+ReLu - 3x3x64x128 / 3x3x64x128 / 3x3x16x32x4
CONV+ReLu - 3x3x64x128 / 3x3x64x128 / 3x3x16x32x4
POOL 2-by-2 2-by-2
CONV+ReLu - 3x3x64x128 / 3x3x64x128 / 3x3x16x32x4
CONV+ReLu - 3x3x128x128
CONV+ReLu - 3x3x128x128
CONV+ReLu - 3x3x128x128
CONV+ReLu - 3x3x128x128
POOL - 2-by-2
FC-1 4x4x128x4096 4x4x128x4096
DROPOUT [2] 50% 50%
FC-2 4096x1024 4096x1024(C.Tech) Or 4096x4096(Im.Net)
DROPOUT [2] 50% 50%
FC-3 1024x10 / 1024x100 4096x102 / 4096x1000
SOFTMAX 1x10 / 1x100 1x102 / 1x1000

Table 2. Comparison of total MAC operations, parameters
used and classification accuracy of 1&2-layer DWT SRCNN
architecture with other well established CNN models for the
ImageNet-2012 dataset.

Models MACs Param.
(Million)

Param.
(MByte)

Accuracy
(Top-1)

Accuracy
(Top-5)

Delta
Top (5 - 1)

MobileNet V1 569 M 4.24 2 70.9 89.9 19
MobileNet V2 300 M 3.47 1.7 71.8 91 19.2

Google Net 741 M 6.99 3.3 - 92.1 -
AlexNet 724 M 60.95 29.1 62.5 83 20.5

SqueezeNet 451 M 1.24 0.6 57.5 80.3 22.8
ResNet-50 3.9 B 25.6 12.2 75.2 93 17.8

VGG 15.5 B 138 65.8 70.5 91.2 20.7
Inception-V1 1.43 B 7 3.3 69.8 89.3 19.5
SRCNN (1L) 169.5 M 42.05 20.1 65.6 82.17 16.57
SRCNN (2L) 46.34 M 13.64 6.5 - - -

proves the state-of-the-art performance for MNIST, CIFAR-
10 and CIFAR-100 datasets by a fair margin. Replacing the
1-layer DWT with a 2-layer DWT decomposition, i.e., with
a 2-layer subband decomposition or 16 subbands, we achieve
an accuracy of 84.37% for TCNN and 88.93% for SRCNN,
on the Caltech-101 dataset. With a 1-layer subband decompo-
sition, SRCNN trained on ImageNet-2012, we achieve top-5
and top-1 validation set accuracy [2] of 82.17% and 65.6%,
respectively. Table 2 indicates that our proposed architecture
achieves accuracy which is competitive with other state-of-
the-art CNN networks that are heavily optimized.
Computational Cost: Table 2 compares the total number of
multiply-and-accumulate (MAC) operations and parameters
used by state-of-the-art CNNs. Both the 1-layer and 2-layer
subband decomposed SRCNNs perform best in class in terms
of number of total MAC operations needed. On the number
of parameters front, the SRCNN architecture performs fairly.

Table 3. Classification accuracy with 1-layer DWT architec-
ture with parameters indicated in Table 1.

Dataset BCNN TCNN SRCNN State-of-art
MNIST 99.72 99.76 99.83 99.79 [25]

CIFAR-10 95.37 96.59 96.71 96.53 [26]
CIFAR-100 80.72 81.74 82.97 81.70 [27]

CALTECH-101 82.17 83.89 86.93 89.47(ZF-5) [6]

Table 4. Classification accuracy with input quantization for
1-layer DWT architecture.

Datasets Models 1-bit 2-bits 4-bits 6-bits 8-bits
MNIST BCNN 97.42 97.53 97.6 97.69 99.72

TCNN 97.87 98.03 99.45 99.53 99.76
SRCNN 99.5 99.6 99.63 99.64 99.83

CIFAR-10 BCNN 76.36 76.06 76.39 85.66 95.37
TCNN 76.66 76.38 79.2 89.56 96.59

SRCNN 78.13 79.2 80.03 91.32 96.71
CIFAR-100 BCNN 54.89 59.66 68.8 73.85 80.72

TCNN 58.91 61.03 69.87 74.75 81.74
SRCNN 60.14 64.79 69.15 74.07 82.97

CALTECH-101 BCNN 69.87 71.96 76.2 79.31 82.17
TCNN 71.66 76.29 80.91 81.47 83.89

SRCNN 71.17 74.94 77.61 83.16 86.93

Table 5. Classification accuracy with weight-and-bias quan-
tization for 1-Layer DWT architecture.

Datasets MNIST CIFAR-10
Models BCNN TCNN SRCNN BCNN TCNN SRCNN
8-bits 90.3 90.91 91.65 60.85 61.37 63.54
16-bits 97.53 97.9 99.65 76.13 79.46 79.84
32-bits 99.72 99.76 99.83 95.37 96.59 96.71
Datasets CIFAR-100 Caltech-101
Models BCNN TCNN SRCNN BCNN TCNN SRCNN
8-bits 56.17 61.13 63.15 71.13 75.4 82.35
16-bits 53.78 61.13 61.37 79.67 80.01 83.16
32-bits 80.72 81.74 82.97 82.17 83.89 86.93

However, the parameters of all compared CNNs fall between
0.6 to 65.8 MBytes, with the 1-layer and 2-layer SRCNN ar-
chitectures at 20.1 and 6.5 MBytes, respectively. In practice,
the difference between 6.5 and 0.6 MBytes can be ignored,
where as a 10× reduction in total MAC operations can signif-
icantly improve computation time.
Quantization Effects: The effect of input-data quantization
and weights-and-biases quantization on classification accu-
racy is listed in Table 4 and Table 5, respectively, for BCNN,
TCNN and SRCNN architectures. MNIST, CIFAR-10/100
and Caltech-101 datasets are native 8 bits per color. We quan-
tize the input image to 1, 2, 4, 6 and 8 bits per color, and the
weights and biases to 8, 16 and 32 bits IEEE floating point
values. As we can see the SRCNN architecture is more ro-
bust than BCNN and TCNN.

5. CONCLUSION

The proposed SRCNN architecture achieves state-of-the-
art performance with computation cost less than 10% of an
equivalent CNN. Our method owes its performance to struc-
tural regularization – the input signal is losslessly decom-
posed into subbands and the subband CNNs are restrained
from learning features in the other subbands, thereby re-
ducing the risk of overfitting. In addition to computational
benefits, the distribution of information across different sub-
bands may vary greatly from class to class. As a result, the
FC layers of SRCNN have more information compared to FC
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layers of a full-band CNN to separate the output space. Fur-
ther, noise and deformities are isolated to each subband and
do not corrupt the rest, making classification robust compared
to analyzing the entire spatial representation by a single CNN.
Our architecture is also robust to input data quantization and
weight-bias quantization error, which is critical in real life
CNN applications where quantization is inevitable.

6. REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” in Proceedings of the IEEE, 1998, pp. 2278–2324.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in NIPS, pp. 1097–1105. 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyra-
mid pooling in deep convolutional networks for visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 9, pp. 1904–1916, 2015.

[7] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size,” CoRR, vol. abs/1602.07360, 2016.

[8] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” CoRR,
vol. abs/1608.08710, 2016.

[9] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The
power of sparsity in convolutional neural networks,”
CoRR, vol. abs/1702.06257, 2017.

[10] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Effi-
cient processing of deep neural networks: A tutorial and
survey,” CoRR, vol. abs/1703.09039, 2017.

[11] T. A. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and
Q. Liao, “Why and when can deep - but not shallow -
networks avoid the curse of dimensionality: a review,”
CoRR, vol. abs/1611.00740, 2016.

[12] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive
regularization of weight vectors,” in NIPS, pp. 414–422.
Curran Associates, Inc., 2009.

[13] X. Sun, “Structure regularization for structured pre-
diction: Theories and experiments,” CoRR, vol.
abs/1411.6243, 2014.

[14] A. K. Tanc and E. M. Eksioglu, “Transform learning mri

with global wavelet regularization,” in 2015 23rd Eu-
ropean Signal Processing Conference (EUSIPCO), Aug
2015, pp. 1855–1859.

[15] V. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ram-
chandran, “Wavelet-regularized graph semi-supervised
learning,” in 2013 IEEE Global Conference on Signal
and Information Processing, Dec 2013, pp. 423–426.

[16] A. Tong, D. V. Dijk, J. S. Stanley, III, M. Amodio,
G. Wolf, and S. Krishnaswamy, “Graph Spectral Reg-
ularization for Neural Network Interpretability,” ArXiv
e-prints, Sept. 2018.

[17] I. Daubechies, “Orthonormal bases of compactly sup-
ported wavelets,” Communications on Pure and Applied
Mathematics, vol. 41, no. 7, pp. 909–996, Oct 1988.

[18] S. C. B. Lo, H. Li, J. S. Lin, A. Hasegawa, C. Y. Wu,
M. T. Freedman, and S. K. Mun, “Artificial convolution
neural network with wavelet kernels for disease pattern
recognition,” in Proc. SPIE, 1995, vol. 2434, pp. 2434
– 2434 – 10.

[19] E. Kang, J. Min, and J. C. Ye, “Wavenet: a deep
convolutional neural network using directional wavelets
for low-dose x-ray CT reconstruction,” CoRR, vol.
abs/1610.09736, 2016.

[20] S. Fujieda, K. Takayama, and T. Hachisuka,
“Wavelet convolutional neural networks,” CoRR,
vol. abs/1805.08620, 2018.

[21] E. Oyallon, E. Belilovsky, and S. Zagoruyko, “Scaling
the scattering transform: Deep hybrid networks,” CoRR,
vol. abs/1703.08961, 2017.

[22] I. Daubechies, “The wavelet transform, time-frequency
localization and signal analysis,” IEEE Trans. on Info.
Theory, vol. 36, no. 5, pp. 961–1005, Sept 1990.

[23] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evalu-
ation of rectified activations in convolutional network,”
CoRR, vol. abs/1505.00853, 2015.

[24] K. He and J. Sun, “Convolutional neural networks at
constrained time cost,” in CVPR, 2015, pp. 5353–5360.

[25] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus,
“Regularization of neural networks using dropconnect,”
in Intl. Conf. on Machine Learning, Atlanta, Georgia,
USA, 17-19 Jun 2013, pp. 1058–1066, PMLR.

[26] B. Graham, “Fractional max-pooling,” CoRR, vol.
abs/1412.6071, 2014.

[27] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” CoRR, vol. abs/1605.07146, 2016.

5


	1  Introduction
	2  Proposed Architecture
	3  Properties of the Architecture
	4  Experimental Setup and Results
	4.1  Methodology and Training
	4.2  Results

	5  Conclusion
	6  References

