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ABSTRACT
We present a light field synthesis technique that achieves ac-
curate reconstruction given a low-cost, wide-baseline camera
rig. Our system integrates optical flow with methods for rec-
tification, disparity estimation, and feature extraction, which
we then feed to a neural network view synthesis solver with
wide-baseline capability. We propose two novel warping
methods that improve the accuracy of disparity estimation
and view synthesis. The methods enable the use of off-
the-shelf surveillance camera hardware in a simplified and
expedited capture workflow. A thorough analysis of the pro-
cess and resulting view synthesis accuracy over state of the
art is provided.

Index Terms— Light field reconstruction, view synthe-
sis, camera arrays, surveillance cameras, disparity estimation

1. INTRODUCTION

The task of image-based view synthesis is to reconstruct
novel viewpoints given one or more sample views of a scene.
Light field video synthesis heightens this challenge to re-
produce novel views of dynamic scenes for high-quality
view-dependent appearance. Such viewpoint synthesis from
real-world captured light fields finds uses in television, video
games and virtual reality, as well as architectural visualization
[1].

A variety of devices have been employed to capture light
fields, all showing a trade-off between equipment cost, as-
sembly and calibration effort, reconstruction performance
and workflow simplicity. Micro-lenslet array cameras such
as Lytro [2] and Raytrix [3], for out-of-the-box light field
capture have limited baseline and are primarily appropriate
for light field focus manipulation uses. Single scan swept
paths using e.g. GoPros [4] also provide a low cost and sim-
ple usage, but require custom constructions and only deal
with static scenes. More involved multi stereo pairs [5] and
large camera arrays [6], can be highly complex and costly
requiring special purpose ingest hardware assembly and cal-
ibration, with custom synchronization and machine vision
components. Meanwhile, surveillance camera systems have
been developed for consumer ease of use of multi-camera
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ingest with low-cost packaged storage, and with ever increas-
ing resolution and frame rate. Since such systems are not
designed for accurate synchronization, homogeneous image
capture or calibration, we develop new methods to enable
these widely accessible systems for the purpose of light field
synthesis.

We propose a view synthesis algorithm adapted to low-
cost camera rigs, with particular attention for human motion
capture. We develop an integrated process to solve camera
rectification, whilst simultaneously refining disparity estima-
tions, by employing optical flow. Given refined disparities
we then adapt the neural network view synthesis method of
Kalantari et al. [7], overcoming their limitation of narrow
baseline cameras by selective application of a disparity prior.
The contributions of this paper are three-fold:

- A multi-camera rectification method making use of op-
tical flow methods.

- Two novel warping strategies to reduce artefacts in
novel view and disparity estimates.

- A depth-guided feature extraction method for learning-
based view synthesis.

Our proposed method allows for the creation of a detailed rep-
resentation of scenes, such as shown in Figure 1, at arbitrary
sampling density. Such representations can be fed into light
field displays or used for Virtual Reality experiences [8].

2. RELATED WORK

In most light field capture setups, cameras are arranged with
uniform spacing on lines or grids, thus facilitating the sam-
pling of the 4D light field. This leads to a particular geomet-
ric property in the epipolar plane images (EPIs): the slopes
of lines formed by corresponding pixels correspond to their
depth [9]. Various methods making use of this property have
been proposed for 3D reconstruction from light fields [10].
For instance, Kim et al. [11] recover high-resolution depth
maps of urban scenes from a linearly moving camera using a
sparse EPI representation and a fine-to-coarse estimation ap-
proach. More recently, learning-based approaches [12] have
been considered because of their ability to account for nonlin-
ear phenomena induced by view-dependent effects and mis-
calibration.

EPI-based methods require very accurate calibration in
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Fig. 1: View synthesis results from the proposed methods. We use images 1, 4 and 7 to synthesize intermediate views (2,3,5,6).

terms of both lighting and camera poses. The method pro-
posed by Kalantari et al. [7] does not rely on EPIs and is
therefore more suitable for inexpensive camera rigs such as
ours.

Recently, there has been a surge in view synthesis solu-
tions based on the so-called Layered Depth Images (LDI),
originally introduced by Shade [13]. Both Tulsani et al. [14]
and Dhamo et al. [15] proposed a method to learn a 2-layered
depth plane representation, allowing to synthesize both depth
and textures in (visible) foreground and (occluded) back-
ground. While the goal of the above methods is to learn the
content of non-visible pixels, our method is not restricted
to one or few views and uses information from neighboring
views to fill in missing information in the case of disocclu-
sions.

Penner et al. [16] and Flynn et al. [17] used a similar
multi-layer representation on multiple input images, con-
structing the color image at the target view from a probabilis-
tic depth volume, and probabilistic disparities, respectively.
Zhou et al. [18], introduce multiplane images, which enable a
single global scene representation, encompassing colors and
visibility factors at a predefined set of depth planes.

While LDI-based approaches outperform the work of
Kalantari et al. in terms of occlusion handling, they have a
limited capability in resolving view-dependent effects, which
is of high importance in human motion capture. By introduc-
ing a prior-guided feature extraction and improved warping
schemes for Kalantari’s pipeline, we create a system that can
model view-dependent effects and correctly resolve disocclu-
sions.

3. REFINED RECTIFICATION AND DISPARITY
ESTIMATION

3.1. Multi-Camera Rectification

While a solution for rectifying camera pairs facing the same
direction always exists [19], [20], rectification of more than
two cameras can only be approximated. Our multi-camera

rectification method is based on the solution proposed by
Nozick [21], but tailored to motion capture setups like ours.
Firstly, since all cameras share a large field of view, one single
camera is enough as reference (no iterative updates between
views are required). Secondly, we set the orientation to the
average of all cameras, which ensures a good match between
rectified and original poses. We model the focal lengths of
our N cameras, to be the minimizers of the following cost
function:

L (θ) =

N∑
i=1

M∑
m=1

∣∣∣(f (θi, xm)− u1m)y

∣∣∣ , (1)

where θi ∈ R2 contains the unknown focal lengths for camera
i, M is the number of calibration points and u1m is the image
coordinate of point m in the left-most camera. For mapping
the calibration point xm ∈ R3 to the rectified image of cam-
era i, we use the standard pinhole model [20], denoted by
f (θi, xm).

We solve (1) with the Nelder-Mead minimization scheme
provided in SciPy.1 The optimization converges in only a few
iterations and the final cost per calibration point is on average
less than 0.5 pixels for all camera pairs. The performance was
experimentally found to be independent of the choice of the
reference camera.

The rectification accuracy decreases with increasing dis-
tance from the location of the calibration pattern in the camera
frames. However, since optical flow is an important compo-
nent of our view synthesis pipeline, we can favorably use it
to refine the rectification too: by forward-warping the input
images with the vertical component of the optical flow field,
we obtain accurately rectified images in the region of inter-
est, without the need for re-calibration. As shown later, this
significantly improves reconstruction accuracy.

3.2. Disparity Estimation

Given the input images from a set of cameras, we obtain the
optical flow field between each camera pair using the PWC-

1www.scipy.org, version 1.1.0.
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Fig. 2: Results of the proposed warping strategies. Figures (b) to (e) show that the cracking and ghosting artefacts of the naive approaches
are correctly resolved using the proposed method. Figure (f) shows the disparity refinement convergence results. dispij denotes the error
between the warped input disparity at position i and the target disparity at position j. Both MAE and PSNR are depicted.

Net [22] method. This choice is motivated by its recent suc-
cess and software availability. We use the PyTorch implemen-
tation by Niklaus 2, and perform a coarse foreground segmen-
tation before feeding the input images into the pipeline.

To obtain a disparity map from the optical flow field, we
first warp the flow images using the vertical flow component,
like in the rectification refinement. This estimate is then re-
fined by exploiting the high redundancy between pairs of dis-
parity maps: indeed, warping one disparity map with itself,
one should obtain the neighboring disparity map and vice-
versa. This leads to the following iterative pairwise horizontal
refinement algorithm:

D̃ij = g(D
(k)
ji ,−D

(k)
ji ), D

(k+i)
ij = max

(
D̃ij , D

(k)
ij

)
,
(2)

where Dij is the disparity map from camera i to j, max is
the pixel-wise maximum, and g(D, I) is our forward-warping
operator applied to input disparity D and image I . Choosing
the maximum of warped and reference disparity map ensures
that we do not introduce contents from the background to the
foreground. This iterative process converges in a few steps,
as shown in Figure 2 (f).

3.3. Improved Warping Strategies

We propose two warping strategies which reduce artefacts
typically arising from standard approaches.

Forward Warping Our forward warping method is based
on the strategy proposed by Jantet [23]. The method uses the
insight that in pixel-wise warping, sequentially warped points
are usually adjacent or overlapping. When the intensities are

2https://github.com/sniklaus/pytorch-pwc

Fig. 3: Comparison of crop of reference image (left), with the syn-
thesized view from the neighboring camera, with rectification refine-
ment (middle). Without refinement (right), the details are blurry.

overlapping, we keep the more recent value, which is reason-
able as long as we adapt the correct scanning order [24]. If
there is a gap between two sequentially projected pixels (de-
noted by ∆p) there are two plausible scenarios. For small
gaps (∆p ≤ pf ∈ N), there is a crack; an artefact naturally
arising when there are changes in smooth disparity regions
which are bigger than one pixel, shown in Figure 2 (c). Be-
yond the threshold (∆p > pf ), there is a disocclusion. We
interpolate cracks as reported previously [23] but leave disoc-
clusions empty, to fill them with information from neighbor-
ing views in the view synthesis process.

Backward Warping In the same spirit as the forward
warping scheme, we introduce a latency threshold pb. We
mask pixels from the input image during warping as soon as
we moved away by pb or more pixels. This eliminates the
ghosting effect, which typically occurs in standard backward
warping, shown in Figure 2 (e). The latency makes sure pixels
can be used more than once, which is important in particular
in smooth disparity regions.

The obtained warping schemes could be extended to non-
rectified image pairs by considering pixel neighborhoods
rather than lines [25]. We empirically find that setting both
thresholds pt and pb to 1 or 2 pixels consistently yields good
results.

4. DEPTH-GUIDED VIEW SYNTHESIS

We propose an adaptation of the learning-based framework
provided by Kalantari et al. [7], and equip it to work for a
wider range of baselines and subjects than originally trained
for, without the need for retraining. The framework consists
of two convolutional neural networks: one for estimating the
target disparity from input images, and one for estimating the
target color image from input images and estimated target dis-
parity. Our first contribution addresses the warping strategy.
The authors use standard backward warping throughout the
process because of its differentiability. Since the networks
are trained end-to-end and optimized for view synthesis, the
system learns to account for artefacts by predicting false dis-
parity values around boundaries. We found that by using our
warping strategies, both the target disparity map and color

https://github.com/sniklaus/pytorch-pwc


images gain in quality.
Even with the above precautions, reconstructing the ge-

ometry of faces remains challenging because of symmetries,
homogeneous regions and complicated view-dependent ef-
fects. To overcome this, we propose a novel prior-guided
feature extraction scheme. Denote by pi ∈ R2 the position
of camera i, lying in a common 2D plane after rectification.
Our goal is to generate the view Lq at position q ∈ R2, given
the input images Lpi

and the input disparities Dpi
. The dis-

parities are obtained from (2) and normalized with respect to
the baseline such that Dpiq = (pi − q)Dpi

. Instead of warp-
ing the input images to L = 100 uniform disparity values in
a fixed interval, we propose a prior-guided warping scheme
which yields a higher resolution in the disparity ranges of in-
terest and thus leads to better view synthesis performance.
We warp the input images to L disparity values dl, sampled
uniformly from a window of size K around the prior. Intro-
ducing Dpiq(dl) = Dpiq + dl, the contrast features are given
by

Ll
q =

1

N

N∑
i=1

g (Dpiq(dl), Lpi) , for l = 1 . . . L (3)

where N is the number of input cameras. The variance fea-
tures are deduced in the same way.

Since the disparity and color networks were trained for
disparities between -21 and 21 pixels, their output and input,
respectively, are linearly mapped to the correct range.

5. EXPERIMENTAL RESULTS

We perform experiments with a linear camera rig made of
16 surveillance cameras and a single ingest 4 TB storage sys-
tem. The 16 channel networked video recorder (NVR) sus-
tains up to 4 K resolution at 30 fps. However, the particular
cameras used are 5 MP varifocal zoom 2.8 mm-12 mm. An
optical synchronization LED signal is used to align frames
temporally before processing by the synthesis pipeline. Two
adjacent cameras are on average 7 cm apart.

In Table 1, we quantitatively evaluate the disparity es-
timation with and without bidirectional refinement for two
different baselines: narrow (adjacent cameras) and wide (2
cameras apart). We use our improved forward and backward
warping schemes and also compare to the standard artefact-
prone schemes. The error measure is the mean absolute error
(MAE) between warped and target image. Our method clearly
improves on classical warping schemes, and refinement is al-
ways beneficial; less so for narrow-baseline than for wide-
baseline. We also compare the view synthesis qualitatively in
Figure 3. When no refinement is performed, the synthesized
image looses in detail, visible in particular in textured regions,
such as the lines in the sweater.

In a second experiment, we sample the light field at ar-
bitrary linear density. Two sample results are shown in Fig-
ure 1. The only visible artefacts are in the background, for

forward backward

narrow wide narrow wide

Ours w. R 3.65 7.10 3.52 6.92
Ours w/o R 3.66 7.27 3.62 7.14
Standard 4.12 8.34 7.73 17.1

× e-02

Table 1: Mean absolute error of refinement (R) performance, for
forward and backward warping and two different baselines.

input left input right disparity left

synthesized view

(a) proposed (b) Kalantari [7] (c) reference

Fig. 4: Results of our view synthesis method compared to Kalantari
[7]. Given the wide-baseline rectified input images, we synthesize
the middle image using the disparities as guides.

which the disparity prior was set to zero. We observe a slight
tone change, which is however consistent across the generated
views and thus not harmful for real-world applications.

Finally, we compare the synthesized image with a refer-
ence image at the same location. One such result is shown in
Figure 4. We compare our synthesis to the method by Kalan-
tari [7], where we adapt their disparity range to reasonable
values for fairness. While the algorithm performs well at the
subject boundaries, it fails to correctly reconstruct the facial
details. Our method shows no visible artefacts at the bound-
aries or in the face: even though the disparity prior is only
coarse, the result is sharp and even fine details such as the
eyes are reconstructed realistically.

6. CONCLUSION

We have proposed a system for light-field reconstruction from
inexpensive camera arrays. While we focus on prior informa-
tion from optical flow, the method can be adapted to depth in-
formation provided by monocular depth estimation or depth
sensors. In future work we plan to address the temporal con-
sistency of the reconstruction, and to exploit redundancy of
consecutive frames to speed up the reconstruction process.
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