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Abstract 

Pollen grain classification has a remarkable role in many fields from medicine to biology and agronomy. Indeed, 
automatic pollen grain classification is an important task for all related applications and areas. This work 
presents the first large-scale pollen grain image dataset, including more than 13 thousands objects. After an 
introduction to the problem of pollen grain classification and its motivations, the paper focuses on the employed 
data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, 
segmentation and labelling. Furthermore, a baseline experimental assessment for the task of pollen classification 
on the built dataset, together with discussion on the achieved results, is presented. 
 
 

1 Introduction and Motivations 

Aerobiology, the discipline that studies airborne biological particles and their dispersal mechanisms, has a crucial role in several 
fields such as medicine, biology, and agronomy, with direct and non-direct effects on the economy and public health. Estimating 
the abundance of airborne allergenic pollen and fungal spores allows to evaluate the associated health risk and the potential 
infectious diseases [1] on both humans [2] and plants [3] for certain periods. The amount of airborne pollen can be considered as a 
proxy to plant phenology and flowering intensity, thus leading to its integration in many yield forecasting systems applied to 
commercially important crops [4, 5]. Despite its effectiveness, the involvment of an expert to analyze images in microscopy is a 
time-consuming task that has hindered the application of aerobiology to those and new sectors [6]. Despite of the various efforts to 
develop devices that allow the identification and classification of pollen grains without the need of end-user intervention [7, 8], the 
observation and discrimination of features from relevant entities performed by qualified experts is still predominant [9]. Recently, 
several tools have been developed to accomplish tasks related to the identification and the classification of pollen grains by using 
the modern Deep Learning techniques. Indeed, Deep Learning has produced impressive results in different fields [10, 11, 12], taking 
advantage of a large amount of labeled data. Specifically, the spread of the methods based on deep neural networks has led to the 
definition of large-scale datasets which are useful to obtain more reliable results. To this aim, we have constructed a dataset of more 
than 13.000 objects from microscope pollen grain images. 
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Table 1: Comparison between the proposed dataset and the main datasets used in pollen grain classification. 

Dataset Number of Grains Image Type Resolution 

Duller’s Pollen 

Dataset [13] 
630 Grayscale 25x25 

POLEN23E [14] 805 Color 
Minimum 250 pixel 

per dimension 

Ranzato et al. [15] 
3.686 

(1.429 images) 
Color 

1024x1024 

(multiple grains per image) 

Proposed Dataset 

>12.000 + ∼1.000 
examples of debris 

(e.g., dust, air bubbles) 
Color 84x84 

 

Table 2: Number of objects for each class. 

Class Label Number of Objects 

Corylus avellana (well-developed pollen grains) 1 1.850 

Corylus avellana (anomalous pollen grains) 2 903 

Alnus (well-developed pollen grains) 3 9.558 

Debris 4 999 

Cupressaceae 5 43 

 

Specifically, we developed a proper pipeline to detect and extract four classes of the pollen grain and an additional class of objects, 
called Debris, which includes air bubbles, dust, etc. We applied the image processing pipeline to digitalized microscope images 
acquired from aerobiological samples. The built dataset is available for research purposes 1. In this instance, the aim of the present 
study is to benefit the future research into pollen classification providing an effective pipeline for assisting experts at classifying 
object into several species. The remainder of this paper is organized as follows. Section 2 lists existing work in which public dataset 
have been used for automatic pollen grain classification. In addition, we described the composition of the proposed dataset. In 
Section 3, we described the segmentation pipeline. Section 4 describes how we applied a pool of standard Machine Learning 
approaches to perform automatic pollen grains classification focusing on preliminary results. In Section 5, we reported the final 
considerations of this paper. 

2 Dataset 

Previous studies have investigated the problem of automatic pollen grain detection and classification in which selfcollected datasets 
have been used to evaluate the proposed pipelines. Two public databases are the Duller’s Pollen Dataset [13] and the POLEN23E 
[14]. The first, contains a total of 630 grayscale images of size 25x25, the latter includes 805 color images of 23 pollen species, with 
35 images for each pollen type. Larger datasets have been proposed for the task of pollen grain detection such as the one presented 
in [15]; however, the number of grains is just 3,686. All related works are summarized in Table 1. In our study, a total of 13,416 
objects from aerobiological images were segmented under the guidance of experts. They collected the airbone samples which were 
processed and analyzed using a longitudinal read of adhesive tapes. Each tape was set on a rotating drum, moved at 2 mm h-1 under 
a suction hole, and the pollen grains that adhered to it were inspected on a daily basis segments by using a Leitz Diaplan bright-
field microscope and a 5 MP CMOS sensor. In accordance with the procedures standardized for this process, the pollen walls placed 
on the microscope slides were selectively stain with a mounting medium containing basic fuchsin (0.08 % gelatin, 0.44% glycerin, 
0.015% liquefied phenol, 0.0015% basic fuchsin in aqueous solution). Acquired images were affected by a heavy background noise 
deriving either from the aerobiological sample itself (i.e. debris and dust and fungal spores) or from the mounting technique (air 
bubbles). For this reason, we developed a segmentation pipeline to locate and extract objects from the microscope images. We 
collected a RGB image for each extracted object (84x84 resolution), alongside its binary mask and segmented image with green 
background. Experts in aerobiology field manually labelled segmented objects grouping them into five different categories: Corylus 
avellana (well-developed pollen grains), Corylus avellana (anomalous pollen grains), Alnus (well-developed pollen grains), 
Cupressaceae, Debris (bubbles, dust and any non-pollen object). In Fig. 1, examples of objects for each class are reported. Under 
the supervision of a team of experts in aerobiology, we discarded 63 objects. Specifically, images depicting pollen objects 

 

 
1 Dataset website: 

https://iplab.dmi.unict.it/pollengraindataset/ 
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 (a) (b) (c) (d) (e) 

Figure 1: Examples of acquired samples. (a) Corylus avellana (well-developed pollen grains), (b) Corylus avellana (anomalous 
pollen grains), (c) Alnus (well-developed pollen grains), (d) Debris, (e) Cupressaceae. 

 

Figure 2: The overall pipeline. (a) Image of an aerobiological sample, (b) Obtained image after applying mean shift filtering 
function, (c) output image after reducing background noise and smoothing it with a Gaussian filter, (d) the resulting image after 
converting color space from RGB to HSV, (e) the mask generated by applying binary threshold, closing and dilate operators, (f) 
the segmented object after detecting object contours from previous mask image, (g) the resulting binary mask after applying a 
mean shift filter and adaptive threshold, (h) the obtained binary image and the related segmented object with green background. 

overlapped to non-pollen ones (i.e., bubbles), which could lead to ambiguous labelling. Hence, the resulting number of segmented 
objects is 13,353. Furthermore, the number of objects per class does not make up an equal portion of dataset. In Table 2, we reported 
the amount of detected objects per class. 

3 Segmentation pipeline 

The proposed pipeline can be split into two main blocks: (i) image pre-processing, (ii) object segmentation using morphological 
operations. The overall scheme of the proposed method is depicted in Fig. 2. 

3.1 Pre-processing Pipeline 

The aim of the pre-processing pipeline is to improve the quality of input images in order to highlight objects contours by reducing 

also the amount of background noise present in aerobiological images. In the first stage, we applied a mean shift filtering to provide 

an image with a flat coloured texture. For a given pixel (x,y), the mean shift algorithm finds the potential neighbor (X, Y) not only 

taking into account its spatial position but also its color hyperspace. 

 

 (a) (b) 

Figure 3: Examples of segmented object classification. (a) Mis-classification of a well-developed pollen object. (b) Correct 
classification of a Debris object. 
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This step is crucial for all the following steps having implications in the performance of image segmentation. The second block is 
designed to smooth background in order to maximize the object detection. After converting the input image to a grey level image, 
we applied binary thresholding combined with Otsu’s method [16] (threshold value set to 127). Since pollen objects were usually 
higher than 500 pixel, we removed all the objects which were less than this size analyzing connected components with 8 neighbors. 
Then, we applied the resulting binary mask to the input image and colored the detect contours in yellow. The key point of creating 
colored contours is to distinguish which objects are inside the foreground area and which are not. Finally, a 11 × 11 kernel Gaussian 
filter is applied to blur the input image and reduce details in background. We combined the obtained images from both previous 
steps with the aim of highlighting objects placed on the foreground against the ones in background. 

3.2 Segmentation Pipeline 

Objects segmentation is the second and important step of the overall pipeline. Firstly, we converted the output image of previous 
stage from RGB color model to HSV color space. Then, we performed binary thresholding using grayscale input image. In order 
to reduce the noise background generated by previous image processing steps, we applied a closing operator followed by a 
dilation using the same 3 × 3 kernel for both operations. Then, we used flood fill algorithm to reassign values of all neighbouring 
pixels of a given point with a required uniform color. In this instance, we implemented flood fill algorithm with the aim of 
distinguishing the foreground from the background. Hence, all the objects of interest have been filled with a black color whereas 
the background has been filled with a white color. After removing objects with a size smaller than 100 pixel by analyzing 
connected components in image, we found objects contours by using the obtained binary mask. Furthermore, the coordinates (X, 
Y) of their centers were calculated. We observed that the obtained binary masks presented holes or were considerably smaller than 
the region of the object of interest. In order to improve the overall quality of binary images, we applied a mean shift filtering 
function and converted the input image in grey mode. Hence, we used an adaptive threshold which takes an adaptive threshold 
Gaussian as input parameter. The Gaussian threshold value is a Gaussian-weighted sum of the neighbourhood values minus the 
constant C. Based on this, we set the block size (neighbourhood) parameter to 77 and C value to 0. At this stage, we reduced noise 
through the use of connected components for selecting objects with a size greater than 150 pixel and we applied flood fill 
algorithm . Finally, we used a dilation operator selecting a 3 × 3 kernel with full of ones and a number of iterations equal to 5 to 
increase the size of object in binary mask image. Segmentation results, in terms of number of detected objects and clearness of 
segmentation masks, have been evaluated by experts. 

4 Preliminary classification results 

4.1 Experiments using Machine Learning classifiers 

In our study, we first considered a pool of Machine Learning methods with the aim of performing an effective pollen grains 
classification. To further investigate textures, Local Binary Pattern (LBP) [17] and Histogram of Oriented Gradient (HOG) [18] 
were computed to generate feature vectors from images. In order to conduct our experiments, we used the set of segmented images 
with green background. We subdivided this dataset by selecting 85% of images as training set and 15% of images as test set. Also, 
we carried out our experiments by using the following models: Linear Support Vector Machine (SVM), RBF SVM, Multi-Layer 
Perceptron (MLP), Random Forest, AdaBoost [19]. For each model, we identified optimal parameters by using Grid Search 
algorithm performing 10 trials and computing the average accuracy obtained at each run. Finally, we assessed the effectiveness of 
each classifier using our imbalanced dataset and relying on optimal parameters that have been selected from the previous stage. In 
class imbalanced classification, the major issue involves the lack of samples of a given class which produces inaccurate results. In 
this instance, the standard performing metrics, such as accuracy, could become an unreliable measure of model performance. To 
furher address the imbalance in the data, we considered penalized classification models for SVM and Random Forest, which adjust 
weights inversely proportional to class frequencies in the training data. These penalties help the model to pay more attention to the 
minority class. For our experiments, we implemented a stratified train-test splitting to ensure that such classes are equally balanced 
in both training and test set. Moreover, considering the small number of observations related to Cupressaceae class (43), we did not 
include them in the dataset used for the experiments. To evaluate the performance of each classifier, we used the weighted F1 score 
for quantitative evaluation [20]. This metric has been selected considering the imbalance in the data. The weighted F1 score function 
calculates the F1 metrics for each class, and their average weighted by support (the number of true instances for each class). With 
regard to HOG, our experiments have shown that the best classification results were obtained by using a RBF SVM [21]. In Table 
3, we reported the best results in terms of accuracy and F1 score for each classifier. We observed that RBF SVM achieved an 
accuracy and a F1 score over 85% with a gamma value of 0.1 and a C value of 1000. Furthermore, the MLP model consistently 
yielded to a F1 score of 0.8431 with alpha value equal to 0.1 and a number of estimators equal to 300. Nevertheless, we observed 
that SVM with RBF kernel did not have a significant classification performance when using LBP features. Specifically, the lowest 
F1 score is equal to 67% considering a gamma value of 1.0 and a C value of 1000. 
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Table 3: Comparison between the best results by using HOG and LBP features. 

Methods Parameters HO 

Accuracy 

G 

F1 score 

LINEAR SVM C = 1000 0.7646 0.7673 

RBF SVM G = 0.1 C = 1000 0.8658 0.8566 

RANDOM FOREST EST = 10 0.7616 0.7124 

ADABOOST LR = 0.5 EST = 500 0.7752 0.7627 

MLP a = 0.1 EST = 300 0.8493 0.8431 

Methods Parameters LBP 

Accuracy F1 score 

LINEAR SVM C = 100 0.7446 0.7439 

RBF SVM G = 0.1 C = 1000 0.6430 0.6714 

RANDOM FOREST EST = 1000 0.7792 0.7387 

ADABOOST LR = 1.0 EST = 100 0.7722 0.7487 

MLP a = 0.0001 EST = 500 0.8002 0.7764 

 

4.2 Experiments using Deep Learning models 

After evaluating the results of previous experiments, we performed object classification through the use of a Deep Convolutional 
Neural Network (i.e., AlexNet [22]). In this instance, we carried out our experiments using two different settings for the training 
data. To create the first set, we only included objects with noisy background whereas for the second one, we defined an augmented 
dataset inserting both sets of images with green and noisy background. Subsequently, AlexNet was trained on these new datasets. 
For both experiments, we also performed data augmentation in training data. Moreover, we set the base learning rate to 0.001, the 
batch size to 64 and number of epochs to 1000. We also introduced an Early stopping function to stop training once the model 
performance stops improving in order to manage overfitting problem. Then, we evaluated the network performance on the test set 
after every 10 epochs. AlexNet achieved an average F1 score of 0.87 using the augumented dataset. With regard to the first dataset, 
it could be observed that AlexNet achieved an average F1 score of 0.74. In Fig. 3, we illustrated two examples of classification 
performed by AlexNet. Our experiments showed that AlexNet tends to mis-classify pollen objects of Corylus Avellana 

(well-developed pollen) class which present a texture similar to object of Alnus class. With regard to Debris object, AlexNet is 
able to classify it accurately. For the sake of completeness, we performed our experiments by using also a different CNN 
architecture which could represent a more appropriate solution for analyzing images with a small size. In our case, we 
implemented a SmallerVGGNet which is a more compact variant of Very Deep Convolutional Networks (VGGNet) [23]. For 
these experiments, we set the same parameters used for AlexNet. SmallerVGGNet achieved an average F1 score of 0.85 using 
augmented dataset and an average score of 0.69 using images with noisy background [24]. 

5 Conclusions 

In this work, we presented a large-scale pollen image dataset composed of more than 13,000 objects. In particular, we described the 
main stages to detect and extract the objects from a set of microscope images. The presented project, based on automatic pollen 
grain classification, has involved experts in aerobiology and Computer Vision field. More specifically, aerobiologists have manually 
labeled the segmented objects by grouping them into five different categories. Then, we performed the pollen grain classification 
by using the most common Machine Learning techniques (e.g., SVM, AdaBoost, etc.) in order to evaluate their performances. In 
our future works, we are planning not only to improve the image segmentation pipeline but also define an effective Deep Learning 
architecture to improve the classification results. 
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