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ABSTRACT

Learned image compression (LIC) has reached the traditional
hand-crafted methods such as JPEG2000 and BPG in terms
of the coding gain. However, the large model size of the net-
work prohibits the usage of LIC on resource-limited embed-
ded systems. This paper presents a LIC with 8-bit fixed-point
weights. First, we quantize the weights in groups and pro-
pose a non-linear memory-free codebook. Second, we ex-
plore the optimal grouping and quantization scheme. Finally,
we develop a novel weight clipping fine tuning scheme. Ex-
perimental results illustrate that the coding loss caused by the
quantization is small, while around 75% model size can be re-
duced compared with the 32-bit floating-point anchor. As far
as we know, this is the first work to explore and evaluate the
LIC fully with fixed-point weights, and our proposed quan-
tized LIC is able to outperform BPG in terms of MS-SSIM.

Index Terms— Image compression, neural networks,
quantization, fixed-point, fine-tuning

1. INTRODUCTION

Image compression is important to relieve the burden of the
image transmission and storage. In the past decades, several
standards have been developed such as JPEG [1], JPEG2000
[2], WebP [3] and HEVC intra (BPG) [4] . Different from
the hand-crafted ways, deep learning has shown a promising
compression ability as reported in [5], [6],[7],[8],[9],[10]. By
employing a proper neural network structure and enhanced
probability models such as factorized and hyper prior, learned
image compression (LIC) has outperformed the BPG in terms
of MS-SSIM. Though LIC methods can achieve a good cod-
ing gain, utilizing many layers and channels will enlarge the
network model, which prohibits the potential usage of LIC on
resource-limited embedded devices.

Recently, weight quantization has shown a superior ca-
pability for the model compression in many networks such
as AlexNet, ResNet and GoogleNet. A binary network with
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1-bit weight and activation were proposed in [11] . Simi-
larly, the number of bits can be reduced to two in a ternary
weight network [12]. [13] pruned the network and quantized
each network connection from 32-bit to 5-bit. An incremen-
tal quantization scheme with fine tuning was proposed in [14].
[15] kept the network accuracy while dividing the weights to
the arbitrary bit-widths. [16] exploited the vector quantiza-
tion to achieve 16-24 times compression ratio. An optimized
quantization scale is learned in [17] to achieve a 4-bit preci-
sion at a comparable accuracy with full precision models.

Though quantization has achieved good performance for
many popular models, there is almost no related work for LIC.
[18] designed an integer network and provided a heuristic
training scheme. However, using integer networks for main
path will diminish the coding gain. In this paper, we quantize
the weights to 8-bit fixed-point for both main path and hyper
path by 1) formulating the quantization in grouping, 2) de-
termining the optimal grouping and quantization scheme by
coding gain, and 3) proposing a weight clipping fine tuning
method. As a result, we can reduce about 75% model size
compared with the 32-bit floating-point edition, and outper-
form BPG in terms of MS-SSIM.

2. QUANTIZATION METHOD FOR LIC

2.1. Formulation of Baseline Hyperprior Architecture

The baseline network we used is shown in Fig. 1, which is
the hyperprior-5 in [10]. The operation can be formulated as
the following two equations

y = ga(x;φ)

ŷ = Q(y)

x̂ = gs(ŷ; θ)

(1)

z = ha(y;φh)

ẑ = Q(z)

µy, σy = hs(ẑ; θh)

(2)

where Eq. 1 and Eq. 2 defines the main and hyper path op-
eration respectively. x and x̂ are the raw and reconstructed
image, y and z are two-layer latent nodes that will become ŷ
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Fig. 1: Diagram of mean-scale hyperprior network.

and ẑ through a uniform quantization. φ and θ are the trained
parameters. µy and σy are the estimated mean and variance
for the usage of the probability model of y.

About the activation function, all the layers in ga and gs
utilized ReLU, while all the layers in ha and hs used leaky-
ReLU. Noted that there is no activations for the final layer in
the analysis and synthesis transforms.

2.2. Grouping and Quantization Formulation

At first, we visualize the weight histograms in Fig. 2. We
can see that both layer-wise and channel-wise weights follow
the Gaussian distribution well with zero mean. According to
[19], 8-bit integer can save around 19x multiply and 30x accu-
mulation power reduction compared with the 32-bit floating
point. Moreover, 8-bit can align with the bit-width of most
on-chip memories. Therefore, the bit budget is set as 8-bit in
this work, which can be represented as a fixed-point manner
{1,IL,FL} where 1 is the signed bit, IL and FL stands for
the integer and fractional bits.

First, we scale the weights w∈R to sw∈(-2, 2), and then
set IL and FL as 1-bit and 6-bit, respectively. By doing so,
the most significant bit for IL and FL will not be wasted.
The scaling is performed in groups. For the weights in the
k-th group, wk are scaled with a scalar scaling factor (sfk).

swk = wk × sfk (3)

where sfk can be calculated by Eq. 4 which can be easily
implemented as a shift operation in the hardware.

sfk = 2−blog2max(|wk|)c (4)

(a) Four layers of analysis transform ga.

(b) First four channels of the final layer of analysis transform ga.

Fig. 2: Histograms of layer-wise and channel-wise weights.

After scaling, for each scaled weight element swi in the
k-th group, the quantization is conducted as follows

Q(swki ) = qkj (5)

where j ∈ 0, ..., 2FL − 1. For the linear quantization (LQ),
the operation of each group is performed as follows

qj =
bswi × 2FLc

2FL
+

ξi
2FL

(6)

where ξi is the rounding function in Eq. 7.

ξi =

{
1, if swi × 2FL − bswi × 2FLc > 0.5

0, otherwise
(7)

For the non-linear quantization (NLQ), each qj is deter-
mined according to the distributions of weights. One method
is to use Lloyd’s method [20], so that the codebook (i.e. qj)
can be optimized according to the following equation

min

len(wk)−1∑
i=0

2FL−1∑
j=0

||swi − qj ||22 (8)

Despite LLoyd’s algorithm is optimal, it requires hard-
ware cost such as Look Up Table (LUT) to memorize the
codebook for each group. To relieve the memory overhead,
we developed an alternative memory-free codebook as shown
in Eq. 9. By doing so, we only need to compare swi with
power of two (i.e. 0.25 and 0.5) to obtain the quantized result



Table 1: Comparison of different quantization and grouping in terms
of coding gain

Layer-wise Channel-wise
Origin LQ NLQ Lloyd LQ NLQ

PSNR (dB) 32.32 28.81 32.08 32.18 31.60 32.25
bpp 0.529 0.770 0.555 0.537 0.569 0.539

Table 2: Comparison of different precision in terms of coding gain

Precision 1
2FL

1
2FL+1

1
2FL+2

1
2FL+3

PSNR (dB) 31.60 32.17 32.28 32.30
bpp 0.569 0.541 0.532 0.530

qj at runtime so that there will be no memory consumption
for the codebook.

qj =



bswi × 2FL−1c
2FL−1

+
ξi

2FL−1
, if |swi| ∈ [0.5, 2)

bswi × 2FLc
2FL

+
ξi
2FL

, if |swi| ∈ [0.25, 0.5)

bswi × 2FL+2c
2FL+2

+
ξi

2FL+2
, else

(9)

2.3. Quantization and Grouping Scheme Determination

As described in the above, scaling is conducted in groups so
that scaling factor (sf) for each group has to be stored. With
more groups, there will be more non-zero weights after the
quantization, while more consumption is required to store sf.
In this paper, we explore two structured group scheme that is
layer-wise (LW) and channel-wise (CW) grouping.

In the case of LW grouping, each group contains the
weight w ∈ R4 where four dimension represents input chan-
nel, kernel width, kernel height and output channel. In the
case of CW grouping, each group contains the weight w ∈ R3

where three dimension represents input channel, kernel width
and height. For both grouping scheme, we attempt the method
in Eq. 6 and Eq. 9. Besides, we also exploit Eq. 8 for LW
rather than CW since it is not feasible to memorize LUTs
for all the channels. For the model with a moderate rate
(λ=0.015, MSE optimized, 4x105 iterations), the results are
shown in Table 1. From the results, we can conclude that
using CW-NLQ can reach the best coding gain.

For the NLQ in Eq. 9, the least magnitude that will not be
quantized to zero is 1

2FL+2 . To ensure this value is enough for
the precision, we explore the coding gain of CW-LQ with dif-
ferent precisions as shown in Table 2. We can see that when
increasing the precision from 1

2FL to 1
2FL+2 , there are obvious

improvements for both PSNR and bpp. However, when fur-
ther increasing the precision to 1

2FL+3 , there is only 0.02dB
and 0.002bpp difference that is quite trivial. Therefore, we
decide to use 1

2FL+2 as the highest precision.

2.4. Weight Clipping Fine Tuning (WCFT)

By using proposed CW-NLQ, the coding loss has been trivial
as shown in Table 1. However, according to the experimental

Algorithm 1 Proposed Training Method with Weight Clipping
Fine Tuning

1: for number of training iterations I1 do
2: J(ga, gs, ha, hs) = λ D(x,x̂)+R(ŷ) + R(ẑ)
3: Update |wk| of ga, gs, ha, hs by descending its SGD
4: end for
5: Clip |wk| to 2blog2max(|wk|)c − ε
6: for number of fine tuning iterations I2 do
7: J(ga, gs, ha, hs) = λ D(x,x̂)+R(ŷ) + R(ẑ)
8: Update |wk| with straight-through estimator (STE)
9: end for

results, for the higher rate models, the loss of CW-NLQ is still
not negligible.

As described in the above, the least magnitude of |swi|
that will not be quantized to zero is 1

2FL+2 . Therefore, to
generate more non-zero quantized results, larger |swi| is de-
sired. From Eq. 4, we can see that sfk is fully dependent
on max(|wk|), and sfk will become larger with a smaller
max(|wk|). Therefore, our target is to reduce max(|wk|).

First, we train the network as usual to obtain the optimized
w. After that, for each group, we clip the maximum magni-
tude to 2blog2max(|wk|)c − ε where ε is a very small value.
After the clipping, we fine tune the network to compensate
the loss caused by the clipping. During the fine tuning, we
adopt the straight-through estimator [21] that is to preserve
the gradient and cancels the gradient when wi is larger than
the clipping value as shown in Eq. 11. The pseudo code of
overall training procedures with fine tuning is given in Algo-
rithm 1.

w′i =

{
wi, if wi ≤ 2blog2max(|wk|)c − ε
2blog2max(|wk|)c − ε, otherwise

(10)
gwi = gw′

i
1|wi|≤2blog2 max(|wk|)c−ε (11)

3. EXPERIMENTAL RESULTS

3.1. Network and Training Details

For the training, we use 256×256 patches cropped from Im-
ageNet [22], and set batch size as eight. I1 and I2 in Algo-
rithm 1 are set as 106 and 105. The loss function is given in
the following equation

J = λ D(x,x̂)+R(ŷ) + R(ẑ) (12)

where D(x, x̂) is MSE and MS-SSIM to optimize PSNR and
MS-SSIM, respectively,R(ŷ) andR(ẑ) are the consumed bits
of y and z. λ is set as [0.001625, 0.00325, 0.0075, 0.015,
0.03, 0.05] for the MSE, and [3,5,10,40,80,128] for the MS-
SSIM to generate six models, respectively. For both MSE and
MS-SSIM, we use 128 filters for four lower rate models, and
192 filters for two higher rate models. We adopt the WCFT
for the two higher rate models.



Fig. 3: PSNR comparison of 32-bit floating-point original LIC, pro-
posed 8-bit fixed-point quantized LIC, BPG and JPEG2000.

Fig. 4: MS-SSIM comparison of 32-bit floating-point original LIC,
proposed 8-bit fixed-point quantized LIC, BPG and JPEG2000.

3.2. Coding Performance Evaluation

First, we evaluate the coding gain of our proposal by the Ko-
dak dataset [23] with 24 distortion-free images, and the results
are shown in Fig. 3 and Fig. 4. We can see that our proposed
8-bit fixed-point LIC is quite close to original 32-bit floating-
point edition. For the four middle rate models, the BD-psnr
[24] loss compared with the original anchor is only 0.1183dB
and 0.1486dB for MSE and MS-SSIM, respectively. Besides,
we can outperform JPEG2000 in terms of PSNR and perform
better than BPG in terms of MS-SSIM. Noted that the PSNR
of fixed-point LIC can be further improved by enhancing the
floating-point anchor model.

We also evaluate the effect of the proposed WCFT in Ta-
ble 3. Before using this scheme, for two high rate MSE mod-
els, the coding loss caused by the quantization is 0.382dB and
0.334dB, while it can be reduced to 0.148dB and 0.258dB.
In addition, the bit increment caused by the quantization can
also be reduced. Without using WCFT, the bpp is increased
by 0.019 and 0.012, while the bpp is only increased by 0.004
and 0.009 after using WCFT. For two high rate MS-SSIM
models, the coding loss can be decreased from 0.285dB and
0.509dB to 0.107dB and 0.264dB, respectively. The bpp in-
crement can be reduced from 0.018 and 0.038 to 0.015 and

Table 3: Coding gain improvement by using proposed WCFT

MSE MS-SSIM
λ 0.03 0.05 80 128

w/o WCFT PSNR (dB) −0.382 −0.334 −0.285 −0.509
bpp +0.019 +0.012 +0.018 +0.038

with WCFT PSNR (dB) −0.148 −0.258 −0.107 −0.264
bpp +0.004 +0.009 +0.015 +0.013

Table 4: LIC model size comparison (MB)

Filter 128 192
Component weight sf total weight sf total

Original 20.72 0 20.72 44.04 0 44.04
Proposed 5.18 0.0016 5.1816 11.01 0.0021 11.0121

0.013, respectively. Therefore, using WCFT is quite helpful
for the coding gain improvement.

3.3. Memory Consumption Evaluation

We evaluate the model size comparison in Table 4. For the
network structure in Fig. 1, the number of bytes for the weight
can be calculated by Eq. 13 where I , O, H , W are input
channel number, output channel number, kernel height and
width, and i is the index of convolution layers. Overall, we
have 17 layers. After quantizing each weight to 8-bit, the total
weight storage can become one-fourth while there is memory
overhead to store sf. According to our experiments, 4-bit is
adequate to save one scalar sf. In the case of CW grouping,
the number of sf is equal to the number of output channels.
Overall, required bytes for the weights can be obtained by
Eq. 14. From the results, we can see that about 75% mem-
ory consumption can be saved since the overhead of the addi-
tional scaling factor is negligible compared with the storage
of weight itself.

Original model size =

layer−1∑
i=0

Ii ×Hi ×Wi ×Oi × 4 (13)

Proposed model size =

layer−1∑
i=0

Ii ×Hi ×Wi ×Oi × 1

+

layer−1∑
i=0

Oi × 0.5

(14)

4. CONCLUSIONS

This paper proposes a fixed-point weight quantization method
for LIC. First, we explore different kinds of grouping and
quantization schemes, and then determine the optimal one
based on the coding gain. In addition, to alleviate the coding
performance loss caused by the quantization error, a fine tun-
ing method is proposed. The results show that we can outper-
form the BPG in terms of MS-SSIM. For the future work, we
will quantize the activations by fixed-point arithmetic and de-
sign the corresponding hardware architectures such as FPGA
and ASIC.
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