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Abstract—In radar systems, unimodular (or constant-modulus)
waveform design plays an important role in achieving better
clutter/interference rejection, as well as a more accurate esti-
mation of the target parameters. The design of such sequences
has been studied widely in the last few decades, with most
design algorithms requiring sophisticated a priori knowledge of
environmental parameters which may be difficult to obtain in
real-time scenarios. In this paper, we propose a novel hybrid
model-driven and data-driven architecture that adapts to the ever
changing environment and allows for adaptive unimodular wave-
form design. In particular, the approach lays the groundwork for
developing extremely low-cost waveform design and processing
frameworks for radar systems deployed in autonomous vehicles.
The proposed model-based deep architecture imitates a well-
known unimodular signal design algorithm in its structure, and
can quickly infer statistical information from the environment
using the observed data. Our numerical experiments portray
the advantages of using the proposed method for efficient radar
waveform design in time-varying environments.

Index Terms—automotive radar, deep learning, deep unfolding,
data-driven approaches, model-based signal processing, unimod-
ular quadratic programming

I. INTRODUCTION

Waveform design for active sensing has been of interest
to engineers, system theorists and mathematicians in the
last sixty years. In the last decade, however, civilian radar
applications such as the use of radar in autonomous cars
have attracted much-deserved attention towards enhanced re-
solvability for advanced safety. In vehicular applications, the
radar technology offers excellent resolvability and immunity to
bad weather conditions in comparison to visible and infrared
imaging techniques. However, the cost overheads of ultra-high
frequency radar signal processors is excessive, which limits
a mass deployment of radar-based advanced vehicular safety
features. Reliable and low-cost deep learning-based algorithms
and hardware may promise a solution to such difficulties.

The quality of automotive radar sensors’ measurements
depends strongly on the transmit waveform design process
[1]. There exist several approaches to tackle the task of
waveform design in such radar systems [2]–[31], which rely
on known radar models. In such model-based approaches, one
only considers a simplified mathematical model and often
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do not take into account the intricate interactions innate to
the kind of complex information systems that are common
in real world. On the other hand, in a purely data-driven
approach, including deep learning techniques, one do not
need an explicit mathematical model of the problem, and
should be able to use the available data at hand for de-
signing the waveforms. The major shortcoming of the data-
driven approach stems from the fact that it is unclear how
to incorporate the existing knowledge of the system model in
the processing stage. Namely, purely data-driven approaches
have a wider applicability at the cost of interpretability, and
in some cases, reliability [35], [36]. In this paper, we seek
to bridge the gap between the model-based and data-driven
approaches, and propose a novel methodology in order to
design efficient waveforms for automotive radars by making
use of the deep unfolding framework [36]–[38]. Note that the
goal of waveform design for radar systems is to acquire the
maximum amount of information from the desirable sources
in the environment, where in fact, the transmit signal can be
viewed as a medium that collects information. In light of this,
we employ the deep unfolding framework that aims to take
the well-established iterative approaches, and design a deep
architecture for waveform design in radar systems under dif-
ferent unimodular signal constraint, and boost the performance
of the underlying inference optimization algorithm in terms of
speed of convergence and effectiveness.

II. RADAR MODEL— AND SIGNAL DESIGN FORMULATION

Consider a radar system transmitting unimodular codes used
to modulate a train of sub-pulses. Let s = [s1 s2 · · · sN ]T ∈
CN denote the complex-valued probing sequence to be de-
signed. Under the assumptions of negligible intrapulse Doppler
shift, and that the sampling is synchronized to the pulse
rate, the received discrete-time base-band signal y, after pulse
compression and alignment with the current range cell of
interest, can be modeled as follows [25]:

y = AHα+ ε, where (1)

AH =


s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...
...

...
. . . 0

...
...

. . . sN
sN sN−1 · · · s1 0 0 · · · 0
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α = [α0 α1 · · · αN−1 α−N+1 · · · α−1]T ∈ C2N−1. (2)

Here, the parameter α0 is the scattering coefficient of the
current range cell, while {αk}k 6=0 are that of the adjacent
range cells contributing to the clutter, and ε is the signal
independent interference comprising of measurement noise as
well as other disturbances such as jamming. The main goal
in a radar system given the measurement model in (1) is
typically to design the probing signal s such that it allows for
an accurate recovery of the target scattering coefficient α0.

Note that, in model-based radar waveform design, the
statistics of the interference and noise is usually assumed
to be known, e.g., through stand-alone prescan procedures.
Under such conditions, the waveform design boils down
to constrained quadratic or fractional quadratic program as
detailed in previous work [25]–[27], [29], [31]. An example
for waveform design criteria comes from the waveform’s merit
for resolvability along with clutter rejection. Namely, using a
matched filter (MF) in the pulse compression stage, one can
look for codes that maximize the following criterion:

f(s) =
n(s)

d(s)
,

|sHy|2∑
k 6=0 |sHJky|2

=
sHAs

sHBs
, (3)

where A = yyH , B =
∑
k 6=0 JkAJ

H
k , and {Jk} are

shift matrices satisfying [Jk]l,m = [JH−k]l,m , δm−l−k,
with δ(·) denotes the Kronecker delta function. Note that the
above function can be interpreted as an oracle to a signal-
to-interference-noise (SINR) ratio as the numerator represents
the signal power and the denominator represents the combined
interference and noise power after applying the matched filter.
We further note that, to lower the implementation cost, it
is desirable to use unimodular codes, i.e. sk = ejφk , φk ∈
[0, 2π), k ∈ {1, . . . , N}, that attain the smallest peak-to-
average ratio possible for transmit signals. As a result, one
can consider the following fractional program in its general
form for radar waveform design:

max
s

sHAs

sHBs
, s.t. |sk| = 1, k ∈ {1, . . . , N} (4)

Note that evaluating the objective function in (4), i.e. comput-
ing f(s), only requires the knowledge of the transmit sequence
s and the observed vector y at the receiver. Nevertheless, solv-
ing the above optimization program is still NP-hard and very
hard to tackle in general. In order to approximate the solution,
one can resort to power method-like iterations specifically de-
signed to tackle unimodular quadratic programs (UQPs) [26].
In what follows, we reformulate the problem of (4) as a UQP,
and present the corresponding power method-like iterations
that lays the groundwork for our proposed hybrid model-aware
and data-driven adaptive waveform design framework.

Observe that both the numerator n(s) and the denominator
d(s) of the objective function f(s) are quadratic in s. Hence,
in order to tackle the maximization of (3) (or equivalently tack-
ling (4)) we resort to fractional programming techniques [39],
[40]. Since f(s), the SINR, is finite, we must have that

d(s) = sHBs > 0. In addition, let s? denote the current
value of the code sequence s. Then, we define

e(s) , n(s)− f(s?)d(s), (5)
s† = argmax

s
e(s). (6)

Henceforth, it can be easily verified by the virtue of (6) that
e(s†) ≥ e(s?) = 0. As a result, we have that e(s†) = n(s†)−
f(s?)d(s†) ≥ 0 implying that

f(s†) ≥ f(s?), (7)

as d(s†) > 0. In other words, we can argue that with respect
to s?, the s† increases the objective function f(s). It is
noteworthy to mention that for the criteria in (7) to hold, it is
sufficient for s† to satisfy e(s†) ≥ e(s?) and that s† shall not
necessarily be the maximizer of e(s).

For a given s? maximizer of (4) we have that:

e(s) = sHAs− f(s?)
(
sHBs

)
= sH (A− f(s?)B)︸ ︷︷ ︸

,χ̃

s

Now, in order to ensure that χ̃ is positive definite, one can
perform a diagonal loading procedure by defining χ , χ̃ +
λIN , where λ ≥ max{0,−λmin(χ̃)}. Next, the optimization
problem of (4) can be cast as the following UQP [26]:

max
s

sHχs, s.t. |sk| = 1, k ∈ {1, . . . , N}. (8)

In order to efficiently tackle (8), a set of power method-
like iterations (PMLI) were introduced in [26], [27] that can
be used to monotonically increase the objective value in (8)
using the following nearest-vector problem:

min
s(n+1)

∥∥∥s(n+1) − χs(n)
∥∥∥
2
, s.t.

∣∣∣s(n+1)
k

∣∣∣ = 1, ∀ k. (9)

The solution to (9) can be computed analytically and is given
as follows [26], [27]:

s(n+1) = ejarg(χs
(n)). (10)

where n denotes the internal iteration number, and s(0) is
the current value of s. One can continue updating s until
convergence in the objective of (4), or for a fixed number
of steps, say L. These iterations are already shown to provide
a monotonic behavior of the quadratic objective (no matter
what the signal constraints are), and subsume the well-known
power method as a special case. Such a general approach
to computationally efficient quadratic programming that can
handle various signal constraints (many of which cause the
problems to become NP-hard) opens new avenues in signal
processing in low-cost scenarios.

Note that, in many practical scenarios, one might not have
access to the a priori information about environmental param-
eters. In the following, we aim to devise a hybrid data-driven
and model-based approach that allows us to jointly design
adaptive transmit code sequences while learning these param-
eters given the fact that the environmental information are in
fact embedded into the observed received signal y. Namely, we
propose a novel neural network structure for waveform design,



Deep Evolutionary Cognitive Radar (DECoR), by considering
the above power method-like iterations as a baseline algorithm
for the design of a model-based deep neural network. In
particular, we consider an over-parametrization of the power
method-like iterations and unfold them onto the layers of a
deep neural network. Each layer of the resulting network is
designed such that it imitates one iteration of the form (10).
Consequently, the resulting deep architecture is model-aware,
uses the same non-linear operations as those in the power
method, and hence, is interpretable (as opposed to general deep
learning models). The structure yet allow us to utilize data-
driven approaches to optimize the parameters of the network
in an online learning manner—making the resulting network
a great candidate for reliable adaptive waveform design in
automotive radar applications.

III. THE DECOR ARCHITECTURE FOR SIGNAL DESIGN

Consider the dynamics of a general fully connected deep
neural network. Let g̃φi be defined as

g̃φi
(z) = a(u), where u =W iz, (11)

where φi = {W i} denotes the set of parameters of the
function gφi

, and a(·) denotes a non-linear activation function.
Then, given an input x0, the dynamics of a fully connected
neural network with L layers can be expressed as follows:

xL = F (x0;Υ) = g̃φL−1
◦ g̃φL−2

◦ · · · ◦ g̃φ0(x0), (12)

where, for a general DNN, Υ = {φi}L−1i=0 denotes the set
of weight matrices W i for each layer. Now, consider the
power method-like iterations of the form (10). The connection
between the two becomes clear by paying attention to the fact
that a fully connected DNN with an activation function defined
as a(x) = ejarg(x), and parameterized on a matrix W (that is
tied along the layers), boils down to performing L iterations of
the PMLI. Therefore, one can immediately see that a fully con-
nected DNN with the specific choice of non-linear activation
function given by the projection operator S(x) , ejarg(x) is an
optimal architecture for waveform design with respect to the
power method-like iterations extensively used in waveform de-
sign in various applications [41], [42]. Hence, power method-
like iterations are perfect candidates for unfolding into DNNs
since they can be characterized by a linear step, followed by
a possibly non-linear operation.

A. The Deep Evolutionary Cognitive Radar Architecture
The derivation begins by considering that in the vanilla

PMLI algorithm, the matrix χ is tied along all iterations.
Hence, we enrich the PML iterations by introducing a weight
matrix χi per iteration i. Note that in the original PMLI
algorithm, the matrix χ changes from one outer iteration
to another. Hence, such an over-parameterization of the it-
erations results in a deep architecture that is faithful to the
original model-based signal design method. Such an over-
parametrization yields the following computation model for
our proposed deep architecture (DECoR). Let us define gφi as

gφi
(z) = S(u), where u = χiz, (13)

where φi = {χi} denotes the set of parameters of the
function gφi , and recall that the non-linear activation function
is defined as S(x) = ejarg(x) applied element-wise on the
vector argument. Then, the dynamics of the proposed DECoR
architecture with L layers can be expressed as:

sL = G (s0;Ω) = gφL−1
◦ gφL−2

◦ · · · ◦ gφ0
(s0), (14)

where s0 denotes some initial unimodular vector, and Ω =
{χ0, . . . ,χL−1} denotes the set of trainable parameters of the
network. The block diagram of the proposed architecture is
depicted in Fig. 1.

Our goal is to optimize the set of parameters Ω of the
proposed DECoR architecture using an online learning strat-
egy that allows for fast adaptation to different environment.
Intuitively, given the nature of the PML iterations, learning
the parameters Ω = {W l}L−1l=0 corresponds to learning the
information corresponding to the signal dependent interference
and environmental noise profile.

B. The Proposed Online Learning Strategy

In an automotive radar application, the environment might
undergo drastic changes along different coherent processing
intervals, and the noise and interference statistics might vary
as a result. Hence, it is natural to consider an online learning
strategy for training the proposed DECoR architecture.

Let Ω(t) denote the set of parameters at time t. Then, the
resulting code sequence given the set of parameters Ω(t) is
simply given by the output of the last layer of the proposed
DECoR architecture, i.e. s(t)L = G

(
s0;Ω

(t)
)

. We define the
goal of our online training procedure as learning the set
of parameters Ω(t+1) such that the resulted code sequence
s(t+1) = G

(
s0;Ω

(t+1)
)

satisfies the following criterion:

f(s(t+1)) ≥ f(s(t)). (15)

Accordingly, we propose the following random walk-
based training strategy for optimizing the parameters
of the proposed DECoR architecture in an online manner:

• Step 0 (Initialization): Choose an arbitrary unimodular
transmit sequence s0 ∈ CN , and set the training counter to
t = 0. Initialize the radius σ of the search region to some
positive constant c, and choose δ ∈ (0, 1]. Further initialize
the set of weight matrices Ω(0) = {χ(0)

i }L−1i=0 such that
χ

(0)
i � 0, for i ∈ {0, . . . , L− 1}.
• Step 1 (Random walk- generation): For l ∈ {0, . . . , L− 1},
generate B random lower triangular matrices
L0
l , . . . ,L

B−1
l ∼ CN (0, σI), and form the set of Hermitian

positive-definite search direction matrices Di
l = Li

lL
iH
l , for

each layer l and for i ∈ {0, . . . , B − 1}, where Di
l ∈ CN×N .

• Step 2 (Random walk- perturbation): For i ∈
{0, . . . , B − 1}, form the set of possible candidate
updates for the current parameter space Ω(t) as
Ω

(t)
i = {χ(t)

0 + Di
0, . . . ,χ

(t)
L−1 + Di

L−1}. Compute the
corresponding B unimodular codes s(t)L,i = G(s0;Ω(t)

i ) for
i ∈ {0, . . . , B} and form the set of training transmission
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Fig. 1. The proposed DECoR architecture for adaptive radar waveform design.

codes as S(t) = {s(t)L,0, . . . , s
(t)
L,B−1}.

• Step 3 (Collecting information): Transmit the unimodular
codes in the set S(t) and obtain the corresponding set
of received signals Y = {y(t)

0 , . . . ,y
(t)
B−1}. Compute the

function f(s) for each transmit/receive pair (s
(t)
L,i,y

(t)
i ) and

construct the set of objective values as F = {f(s(t)L,i)}B−1i=0 .
• Step 4 (Optimizing the DECoR architecture): Choose the
current optimal parameter space using

i? = argmax
i∈[B]

f(s
(t)
L,i).

Update the network parameters if f(s(t)L,i?) ≥ f(s
(t−1)
L ) and

set the search radius as σ ← c. Otherwise, only update the
search radius as σ ← δσ. Continue the online learning by
going to Step 1.

The above proposed online learning strategy for the pro-
posed DECoR architecture is an amalgamation of natural
evolutionary optimization techniques and policy optimization
in reinforcement learning. In particular, the increase in the
objective function f(s) can be seen as a task for an agent
that is interacting with an unknown environment over the
action space of Ω and the corresponding unimodular code
sL = G(s0,Ω). Note that the power method-like iterations and
the model of the system impose a positive definite constraint
on the weight matrices {χi}L−1i=0 . In order to impose such
a constraint in incrementally learning the parameters Ω, we
initialize each χ(0)

i with some positive-definite matrix. We
then perform a random walk in the cone of positive definite
matrices by forming positive definite search direction matrices
Di
l = LilL

iH
l . Such a training strategy results in a fast

adaptation to the ever changing environment. Hence, the radar
agent can continually perform the training on the fly.

IV. RESULTS AND CONCLUDING REMARKS

We begin by evaluating the performance and effectiveness
of the proposed online learning strategy for optimizing the
parameters of the DECoR architecture. For this experiment,
we fix the total number of layers of the proposed DECoR
architecture as L = 30. Throughout the simulations, we
assume an environment with dynamics described in (1), and
with more details in [25], with clutter power β = 1, and a
noise covariance of Γ = I . These information were not made

available to the DECoR architecture and we only use them for
data generation purposes.

Fig. 2(a) demonstrates the objective value f(sL) in (3)
vs. training iterations, for a code length of N = 10. It can
be clearly seen that the proposed learning strategy and the
corresponding DECoR architecture results in a monotonically
increasing objective value f(sL). Furthermore, note that the
proposed learning algorithm optimizes the parameters of the
proposed DECoR architecture very quickly. Next, we evaluate
the performance of the presented hybrid model-based and data-
driven architecture in terms of recovering the target coefficient
α0. In particular, we compare the performance of our method
(DECoR) in designing unimodular codes with two state-of-the-
art model-based algorithms: (a) CREW(cyclic) [27], a cyclic
optimization of the transmit sequence and the receive filter,
(b) CREW(MF) [27], a version of CREW(cyclic) that uses
a matched filter as the receive filter, and (c) CREW(fre)
[43], a frequency domain algorithm to jointly design transmit
sequence and the receive filter. Fig. 2(b) illustrates the MSE of
the estimated α0 vs. code lengths N ∈ {10, 25, 50, 100, 200}.
For each N , we perform the optimization of DECoR architec-
ture by allowing the radar agent to interact with the environ-
ment for 50 training epochs. After the training is completed,
we use the optimized architecture to generate the unimodular
code sequence sL and use a MF to estimate α0. We let
the aforementioned algorithms to perform the code design
until convergence, while the presented DECoR architecture has
been only afforded L = 30 layers (equivalent of L iterations).

It is evident that the proposed method significantly outper-
forms other state-of-the-art approaches. Although the DECoR
framework does not have access to the statistics of the en-
vironmental parameters (as opposed to the other algorithms),
it is able to learn them by exploiting the observed data from
interaction with the environment.
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