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ABSTRACT

Video-based person re-identification has drawn massive at-
tention in recent years due to its extensive applications in
video surveillance. While deep learning-based methods have
led to significant progress, these methods are limited by inef-
fectively using complementary information, which is blamed
on necessary data augmentation in the training process. Data
augmentation has been widely used to mitigate the over-fitting
trap and improve the ability of network representation. How-
ever, the previous methods adopt image-based data augmen-
tation scheme to individually process the input frames, which
corrupts the complementary information between consecutive
frames and causes performance degradation. Extensive ex-
periments on three benchmark datasets demonstrate that our
framework outperforms the most recent state-of-the-art meth-
ods. We also perform cross-dataset validation to prove the
generality of our method.

Index Terms— Video Person Re-identification, Deep
Learning, Data Augmentation.

1. INTRODUCTION

Person re-identification (re-ID) aims to recognize the same
identity in different images or videos captured by different
cameras distributed at separated physical locations. In con-
trast with image person re-1D [1} 2} 3 4], video person re-ID
is more robust to noise. Both spatial information across po-
sitions and temporal information across frames can be used
to represent clip-level features. The previous works [5] 6]
exploit motion estimation either implicitly (e.g. gait) or ex-
plicitly (e.g. optical flow) to represent a video sequence. But
those works are not optimal for video person re-ID. Inaccu-
rate motion estimation, especially when there is occlusion or
parallax, deteriorating the final performance. Besides, those
methods often suffer a heavy computational load. To repre-
sent a clip-level descriptor while maintaining a low compu-
tational cost, temporal pooling has been widely used in re-
cent works [9, [10]. They perform generic or weighted aver-
age pooling in the end of the network to aggregate intra-clip
features across time. However, temporal pooling is a linear
operation which is limited to capture the specific features of
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Fig. 1. Visualization of the concentrated regions for the intra-
clip frames. For fair comparison, we use same feature ex-
traction backbone, i.e, ResNet50 [[7], but with different tem-
poral aggregation strategy. (a) and (b) adopt Temporal Av-
erage Pooling (TAP) and the proposed hierarchical aggrega-
tion strategy, respectively. In (a), the activated maps have a
scattered distribution with less meaningfulness. In (b), the
activated maps are more concentrated and meaningful around
body parts. The activated maps are obtained by Grad-cam [8]].

a video sequence. In this paper, we propose a novel Intra-
Clip Aggregation (ICA) module in order to effectively inte-
grate the clip-level features. Specifically, ICA is a cascade
structure which consists of a learnable block followed by a
temporal average pooling layer. The critical innovation of the
ICA is hierarchically aggregating the intra-clip features with
both linear and non-linear operations. The linear operation
is used to generate global features, and then we apply a non-
linear block to describe the most important semantic concepts
of clip-level features.

Data augmentation, an explicit form of regularization, has
been widely used in the training process of deep neural net-
work. The general data augmentation approaches such as
random cropping, flipping as well as erasing [11} [12] work
well on image person re-ID task by randomly transferring
or noising the original images. The previous works [9, |13}
6] treat video person re-ID as a generalized image person
re-ID task. They apply data augmentation operation asyn-
chronously on the input frames. In such process, each frame



is transformed with a random probability, which introduces
excessive noise and consequently corrupts the temporal cues.
For example, randomly flipping each frame will result in mis-
alignment. In addition, randomly erasing a region of pix-
els of each frame will cause too much spatial-temporal in-
formation loss. In this case, the model may be confused to
fully utilize the interactive information to represent informa-
tive clip-level features and perform poorly in the presence of
real-world noise, e.g., occlusion, lighting and motion blur. In
this paper, we propose a video-based data augmentation ap-
proach for video person re-ID, which is a temporal extension
of commonly used image-level data augmentation techniques.
The proposed video-based data augmentation is easy to im-
plement and meanwhile yields consistent improvement over
three challenging video person re-ID benchmarks.
To sum up, our contributions are listed as following:

* We revisit data augmentation for video person re-ID
task, and propose a novel video-based data augmenta-
tion strategy to strengthen the representation ability and
the generality of the learned model. It can be adopted
on various existed image-based data augmentation ap-
proaches.

* We propose a novel cascade temporal integration
pipeline which effectively integrates the intra-clip fea-
tures in a hierarchical manner.

e Our model outperforms the state-of-the-art methods
on ILIDS-VID [14] and MARS [15]] benchmarks by a
large margin. The impressive result on cross-data vali-
dation shows the generality of the proposed method.

2. METHODOLOGY

In training process, the intra-clip frames within a mini-batch
either are augmented synchronously or remain unchanged,
and then a base network is applied to extract the frame-level
features. Finally, ICA module deeply integrates intra-clip
features in a hierarchical manner to represent the clip-level
pedestrian descriptors. Fig. 2] shows the proposed ICA mod-
ule. The main contributions of the overall framework are two
parts: 1) video-based data augmentation; 2) hierarchically
temporal integration module. More details about synchronous
data augmentation and ICA module are presented in Sec.2.1
and Sec.2.2, respectively.

2.1. Synchronous Data Augmentation

In this subsection, we improve the data augmentation strategy
for video person re-ID task. Commonly used image-level
data augmentation [11} [12] approaches perform well on im-
age person re-ID by suppressing the underlying noise such
as camera intrinsic noise and background noise. However,
as for a video sequence, asynchronous data augmentation
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Fig. 2. The proposed ICA module which integrates the intra-
clip information with a hierarchical pattern.

may introduce unnecessary noise corrupting the temporal
cues of intra-clip frames, which leads to the result that the
model poorly resists the noise from the real world and may be
confused about how to utilize the intra-clip complementary
information. To address aforementioned drawbacks, we pro-
pose a novel video-based data augmentation strategy, termed
as Synchronous Data Augmentation (SDA). Our method can
effectively preserve the complementary information among
consecutive frames and change the underlying noise among
frames synchronously, which helps the network to learn a dis-
criminative distance metric and better utilize the interactive
information among frames. In training, the intra-clip frames
within a mini-batch randomly undergo either of the two op-
erations: 1) remaining unchanged; 2) being synchronously
transformed with commonly used data augmentation tech-
niques such as random flipping [[11]] and random erasing [12].
We formulate the operation of asynchronous transformation
and the proposed asynchronous transformation as following.
For simplicity, we formulate one data augmentation process

as example.
asynchronous transformation:

Tat{f1, for s Fr} = {0 (i) Yim (1)
synchronous transformation:

Tl fi, for o o} = {0 (fi) iz @)

where W(.) denotes the operator of data augmentation.
For asynchronous data augmentation T,:{-}, the operation
{Wx(-)}}_, is randomly changed over the input 7 frames.
For synchronous data augmentation Ty {-}, all frames are
applied with the same operation W(-). {fi}%_, denotes T
frames of a tracklet.

In this paper, we incorporate three types of augmentation
approaches, i.e., random cropping, flipping and erasing. The
transformation probability of each operation is fixed along
temporal axis, i.e., cropping size, rotating angle and erasing
region.

2.2. Intra-clip Aggregation Module

The key idea of ICA module is to capture the important se-
mantic concepts of clip-level features. Based on such motiva-
tion, ICA is designed as a cascade structure, which can fully



integrate clip-level information in a hierarchical manner. ICA
takes the frame-level features as input, and performs average
pooling to generate clip-level global features in preliminary
fusion, which can be expressed as:

W H T

1
- Xocwn )

Where X . .5 is temporally concatenated frame-level fea-
tures. Zi 1,1 is clip-level global features obtained by lin-
ear projection. Subsequently, the above Z 1,1 is further
integrated with a high dimensional feature projection block,
which can be formulated as:

Zie11 =

Y% = GC*}E(Zl,C,l,l) (4)

Where Y: stands for the clip-level semantic embedding.
G.—z(+) denotes the non-linear projection. To reduce the
computational cost, we design G._,z(-) as a bottleneck struc-
ture, which is composed of fully-connected (FC) layer and
batch normalization (BN) [16]. More details about the pa-
rameter setting and structure of ICA can be found in Fig.[2]

In comparison with the most existing methods [9, [10],
which typically adopt a temporal pooling layer in the end of
the network to represent the clip-level features, our method
is able to generate more discriminative clip-level features by
leveraging the interactional information among consecutive
frames (see Fig. [TI). The impressive experimental results
about synchronous data augmentation and ICA module are
presented in Sec.3.

3. EXPERIMENTS

3.1. Datasets and Evaluation Protocols

We conduct extensive experiments on three challenging
video-based person re-ID datasets, including the ILIDS-
VID [[14], PRID 2011 [17] and MARS [15]. The ILIDS-VID
dataset contains 300 identities forming a total number of
600 video sequences. Pedestrians are observed in two non-
overlapping cameras views. The length of each tracklet
varies from 23 to 192, with an average number of 73 frames.
The train and test set are splited evenly of 150 identities. The
PRID 2011 dataset is another standard benchmark for video-
based person re-ID. Following [18] [19], we select 178 out of
200 identities with more than 21 frames forming a total num-
ber of 356 video sequences. The MARS dataset is the one of
the largest datasets, which consists of 1,261 different IDs and
around 20,000 tracklets from 6 cameras. We evaluate the per-
formance of the proposed method on ILIDS-VID and MARS,
and implement cross-dataset evaluation on PRID2011.

We evaluate our model by Mean Average Precision (mAP)
score and Cumulative Matching Characteristic (CMC) curve.
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Fig. 3. Visualization of the embedding space. We sam-
pled ten identities, and each ID contains two video clips with
twelve frames. We use ResNet50, pre-trained on ImageNet,
as frame-level feature extractor, and then visualize these fea-
tures by t-SNE [20].

Datasets | Model | ILIDS-VID | MARS

Rank @k ‘ [ 1 5 20 | 1 5 20 | mAP
Baseline Model 1 | 782 87.8 92.1 778 864 90.7 | 74.5
Bascline + SDA | Model 2 | 80.3 89.5 928 | 79.1 874 0914 | 75.6
ICA Model 3 | 86.1 969 98.7 |85.1 952 974 | 807
ICA + SDA Model 4 | 88.7 98.7 100.0 | 87.5 96.6 982 | 816

Table 1. Ablation on the effectiveness of the proposed com-
ponents.

3.2. Implementation Details

Our model is supervised by triplet loss [21]] and cross-entropy
loss [22]. Adam optimizer with 8; = 0.9 and 8y =
0.999 is adopted to optimize the proposed framework, where
weight decay is set to 5 x 10~%. The learning rate is ini-
tially set to 4 x 10~ and later down-scaled by a factor of 5
every 200 epochs until 500 epochs. We randomly sample 4
identities with 8 consecutive clips forming the mini-batch of
32. According to [9, 24], we set the length of each clip to
4. The input frames are uniformly resized to 256 x 128 x 3
and linearly scaled to [-1,1]. In training, the temporally ran-
dom cropping, temporally random flipping and temporally
random erasing are used to augment each video clip. We
adopt the same settings for training all datasets. We utilize
the ResNet50 [7] pre-trained on ImageNet as the frame-level
feature extraction network. Note that out method can be eas-
ily generalized to other backbones. All experiments are con-
ducted on a server with Python 3.6.4 and Pytorch 1.1 plat-
form.



Datasets Backbone ILIDS-VID MARS
Rank@k 1 5 20 1 5 20 | mAP
Alexnet [L1] 53.1 694 751 | 513 66.8 73.8 | 49.7

Baseline + SDA | InceptionV3 [25] | 69.5 83.6 89.7 | 67.2 81.6 873 | 62.5
ResNet50 [7 803 89.5 928 |79.1 874 914 | 75.6
Alexnet [11 62.1 790 83.1 | 595 76.1 803 | 54.7

InceptionV3 [25] | 784 94.1 974 | 763 914 95.0 | 72.0
ResNet50 [7 88.7 98.7 100.0 | 87.5 96.6 98.2 | 81.6

ICA + SDA

Table 2. Ablation on the effectiveness of different feature
extractors.

3.3. Ablation Study

The baseline (Model 1) corresponds to resnet-50 with tem-
poral average pooling, and training with asynchronously ran-
dom cropping, flipping and erasing. The effectiveness of each
component is reported in Table [ From top to bottom, we
evaluate each component successively. We can observe that,
with the proposed video-based data augmentation, Model 2
surpasses the Model 1 on ILIDS-VID and MARS datasets
about 2.1% and 1.3% at rank-1, respectively. Attributed to
ICA module, Model 3 improves the rank-1 accuracy by 7.9%
and 7.3% than Model 1 on ILIDS-VID and MARS, respec-
tively. By combining the proposed SDA and ICA module,
Model 4 works better than other models by a large margin.
We also implement our method on different backbones, and
the result shows that “ICA+SDA” consistently outperforms
baseline, demonstrating that our method performs well with
different frame feature extractors.

To better understand the difference between asynchronous
and synchronous data augmentation, we carefully visualize
the corresponding embedding space, as shown in Fig. 5] We
can see that the (a) illustrates a scattered distribution, where
the intra-clip frames are separated and mixed with other clips.
The (b) shows intra-clip frames are clustered and preserve
more clip-level information.

3.4. Comparison with State-of-the-arts

We use the best model (Model 4) obtained by the proposed
ICA and SDA to compare with previous state-of-the-art re-
sults. As shown in Table [3] the first two methods [6} [26] ex-
plicitly utilize the temporal information by using a on-line
network to estimate the optical flow between the consecu-
tive frames and combining them with the spatial informa-
tion to represent the clip-level features. The third method [3]]
contributes to implicitly use the spatio-temporal information
with a succession of 3D convolutions. The last seven meth-
ods [18} [13L [10L 9, [19} 24} [2'/] aggregate intra-clip features
over temporal dimension to represent the clip-level features.
Note: STMP [19] uses inceptionV3 as their backbone net-
work. Different feature extractors have significantly impact
on the final performance, as shown in Table We care-
fully re-implement [19] by adopting ResNet50 as the back-
bone network. Table [3] reveals that our method outperforms
other state-of-the-art methods by a large margin, more than

Datasets ILIDS-VID MARS

Rank @k 1 5 20 1 5 20 ‘ mAP
QAN [6] 68.0 86.8 974 | 737 849 916 | 51.7
AMOC [26] 68.7 943 993 | 683 814 906 | 529
Liaoetal. [S] | 81.3 - - 84.3 - - 71.0
TRL [18] 577 817 941 | 793 91.1 96.0 | 66.8
STSRN [13] | 70.0 893 98.7 | 76.7 93.8 98.1 -
DRSA [10] 80.2 - - 82.3 - - 65.8
Gao et al. [9] - - - 833 938 974 | 76.7
STMP [19] 857 975 998 | 862 953 978 | 75.6
STA [24] - - - 863 957 97.1| 80.8
GLTR [27] 86.0 98.0 - 87.0 958 982 | 785
Ours 88.7 98.7 100.0 | 87.5 96.6 98.2 | 81.6

Table 3. Performance comparison with other stare-of-the-art
methods on ILIDS-VID and MARS datasets. “-”’: no reported
results.

Datasets PRID 2011

Rank@k 1 5 20
TRL [18] 29.5 59.4 82.2
STSRN [13] 30.0 58.0 85.0
STMP [19] 32.0 58.0 90.0
Ours 41.6 71.9 92.1

Table 4. Generality comparison with other state-of-the-arts
methods.

0.5% better than the recent proposed STA [24] and GLTR [27]]
at rank-1 and rank-5 on MARS benchmark. Due to the over-
fitting trap, the previous methods may exhibit good perfor-
mance on the training set, but suffers severe performance de-
generation when work on a new dataset. To better understand
the generalization performance of our method, we conducted
cross-dataset experiment. We trained Model 4 on ILIDS-VID
and evaluate it on PRID2011. Table [ shows that our model
achieves consistently superior performance over other meth-
ods, which demonstrates the generality of our method.

4. CONCLUSIONS

In this paper, we revisit data augmentation for video person
re-ID task, and propose a video-based data augmentation
scheme, termed as Synchronous Data Augmentation, for
training the convolutional neural network. Benefited from
the proposed data augmentation strategy, our model is better
to utilize the interactive information among frames and has
strong generality. In order to extract clip-level semantic fea-
tures, we also propose a [CA module to integrate the intra-clip
features in hierarchical manner. Thanks to the proposed data
augmentation strategy and temporal integration pipeline, we
achieve new state of the art on ILIDS-VID and MARS bench-
marks without re-ranking. We also perform the cross-dataset
validation and confirm the generality of our method.
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