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ABSTRACT
Producing realistic character animations is one of the essential
tasks in human-AI interactions. Considered as a sequence of
poses of a humanoid, the task can be considered as a sequence
generation problem with spatiotemporal smoothness and real-
ism constraints. Additionally, we wish to control the behavior
of AI agents by giving them what to do and, more specifically,
how to do it. We proposed a spatiotemporally-conditioned
GAN that generates a sequence that is similar to a given se-
quence in terms of semantics and spatiotemporal dynamics.
Using LSTM-based generator and graph ConvNet discrimi-
nator, this system is trained end-to-end on a large gathered
dataset of gestures, expressions, and actions. Experiments
showed that compared to traditional conditional GAN, our
method creates plausible, realistic, and semantically relevant
humanoid animation sequences that match user expectations.

Index Terms— Character Animation Generation, Spa-
tiotemporal Conditioning, Generative Adversarial Networks

1. INTRODUCTION

One of the challenges of developing virtual agents is the
scarceness of proper animations and reactions to establish
meaningful, realistic, and engaging interaction with the user.
Virtual agents require a battery of non-repetitive gestures, ex-
pressions, and actions to promote the interaction, which calls
for generating customizable actions, big datasets of stored
animations, or efficient online generation techniques. De-
signing and real-time customization of the actions requires
a great deal of expertise; thus, significant progress has been
made to realize the automatic generation of facial expressions,
lip sync [1], gaze [2] and hand gestures [3]. Synthesizing new
motion by using autoregressive techniques gained some at-
tention recently. However, existing methods tend to freeze or
diverge after a couple of seconds due to an accumulation of
errors in the closed training loop of the networks [4].

Generative adversarial networks (GANs), consists of a
generator and a discriminator networks that are trained ad-
versarially to generate new data with the same statistics as the
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Fig. 1. The C-GAN (first row) is presented with one of the
available action labels sitting-talking-angrily while
the input sequence to our proposed STC-GAN (second row)
depicts a sitting person who is angrily talking with his hands.
The sequence generated with the former tends to covers a
wide variety of poses, some semantically different (e.g., re-
laxed, relaxed, etc.) and some aesthetically different (e.g., sit-
ting on the floor), whereas the sequences generated with pro-
posed method tend to have similar semantics and spatiotem-
poral dynamics with the input while maintaining diversity.
Visualized using Unity3D, character taken from Mixamo(c).

training set, e.g., by generating new photographs that look at
least superficially authentic to human observers, having many
realistic characteristics [5]. One of the practical problems of
GANs is multi-modal data. Despite the advancements in this
domain, it is still challenging to scale such models to accom-
modate an extremely large number of predicted output cate-
gories. One of the solutions is to provide the two networks
with extra auxiliary information in the form of class labels or
data from other modalities. Class-conditional GANs gener-
ates much better samples than GANs that were free to gener-
ate from any class [6]. Additionally, even if class information
does not explicitly fed to the generator, the sample quality
may improve [7], and training the discriminator to recognize
specific classes of real objects is sufficient.

To condition the generation process on the input, Condi-
tional GAN is proposed in [8], which provide both generator
and discriminator with additional data about the part of distri-
bution that the generator is expected to model, for example,
having a sitting-talking sequence as an input, tell both

ar
X

iv
:2

00
5.

11
48

9v
1 

 [
cs

.C
V

] 
 2

3 
M

ay
 2

02
0



generator and discriminator that what part of action space is
considered. In [8] authors introduced the data label as the aux-
iliary input, which only defines the region-of-interest in action
space. However, their method is unable to condition the out-
put with a specific fine-grained semantic and spatiotemporal
dynamics of the input since the labels are by nature impose
coarse clustering in the action space (Figure 1). To this end,
we propose to input an instance of the expected input as a
sample of the expected fine-grained region of the input dis-
tribution. Specifically, we propose to use spatiotemporally-
conditioned GAN (STC-GAN) to generate actions semanti-
cally and structurally close to the input. In this study, we

• proposed STC-GAN for fine-tuned semantically and syn-
tactically consistent sequence generation;

• created animGAN that employs the proposed framework
for character animation;

• gathered and unified a large dataset for realistic character
motions, including gestures, expressions, and actions.

2. BACKGROUND

Animation Generation: Considering the cost of gathering
mocap data, animation generation has been studied for dif-
ferent applications such as games, movie making and human-
computer interaction [9,10]. With the prevalence of deep net-
works different lines of research has emerged in this domain
e.g., generating gait dynamics and foot kinematics [11], se-
quence generation given early few frames [4,12], from textual
description [13, 14], physics-based motion controllers [15],
and reinforcement learning for mimicing human [16].
GANs for Sequence Generation: Modeling the sequence of
data is usually done using Recurrent neural networks (RNNs),
where they are used to trained to predict the next stage of
the sequence, and were initially used along with adversarial
training in RNN-GAN [17] to model the whole joint proba-
bility of a sequence and be able to generate the sequence of
data. A conditional LSTM-GAN is proposed in [18] to gen-
erate a novelty music sequence, given the lyrics as additional
context to instruct these two networks. Generally, GANs give
score/loss for the entire generated sequence when it has been
generated, and for a partially generated one, it is non-trivial to
balance the quality of generated part versus the part to be gen-
erated. To this end, the data generator is modeled as a stochas-
tic policy in reinforcement learning [19] via Monte Carlo tree
search, a reward at every generation step [20], or getting feed-
back from the discriminator [21].

3. MODEL

To realize AnimGAN, a version of the proposed STC-GAN
that generates character animations that are semantically and
spatiotemporally consistent with the input sequence, we pro-
pose to generate a set of consecutive motions of the skeleton

of a human body from an input sequence of actions, centered
on human in a feed-forward manner. During training, we
assume that all images are annotated with 2D joints. We also
prepared a dataset of annotated video sequences of human
bodies doing different actions, where the data annotations
come from ground truth, 2D pose estimation systems, or
projecting 3D joints from MoCap data into an image plan.
We proposed a spatiotemporally-conditioned GAN to pre-
serve the temporal semantics while generating novel realistic
sequences similar to the initial one. A sequence of pose em-
bedding vectors (one from each frame) concatenated with
noise vectors is taken as the input of the generator network.
The sequence of consecutively generated poses is then passed
to the discriminator that tries to distinguish them from the
real-world actions present in the action dataset. In addition,
the generator is equipped with a temporal smoothness regu-
larization to cancel out the jitter in the joint localization in the
dataset and input data and to shrink the generation space to
yield more plausible results while speeding up the training.

3.1. Problem Formulation

Proposed by Goodfellow et al. [22], GAN simultaneously
train two competitive networks, a generator G and a descrim-
inator D with opposing objectives. G tries to capture data
distribution of the training set, whereas D tries to distinguish
samples produced by the generator from the real ones. In
original GAN, generator takes a Gaussian noise vector z,
and converts it to an synthetic sample ỹ = G(x). Playing a
zero-sum game, the GAN is improving both G andD with the
following loss:

min
G

max
D

V (D,G) = Ey∼pdata (y)[logD(y)]

+ Ez∼pz(z)[log
(
1−D(G(z))

)
]

(1)

In the conditional GAN, both G and D are provided with
the auxiliary input x, where generator G(z|x) and discrimi-
nator D(z|x) plays the min-max game in Equation (1).

Taking a sequence X =
(
x1, · · · ,x|X |

)
as input, our goal

is to generate a sequence Y =
(
y1, · · · ,y|Y|

)
that is seman-

tically similar to X , preserve the speed of the action in X , and
is realistic. Inspired by [18], we defined the loss functions (m
is mini-batch size) as

LG =

m∑
i=1

log
(
1−D(G

(
zi|xi)

))
+ LST (2)

LD = −
m∑
i=1

[
logD

(
yi|xi

)
+ log

(
1−D

(
G
(
zi|xi

)))]
(3)

where LST is the spatiotemporal conditioning loss.

3.2. Spatiotemporal Conditioning

For each specific action, a subset of joints is activated, and for
different actions, a different set of joints are used. Hence, in



action classification, only the spatial joints that are spatially
activated should be focused (hereafter called main joints), and
the rest could be ignored as they are mostly non-discriminant,
occluded, or noisy [23]. Using spatiotemporal conditioning
term serves two main purposes: (i) matching the generated
pose to its previous pose to avoid large displacement and dras-
tic velocity changes in the main joints for the actions, (ii) en-
forcing spatiotemporal similarity between main joints gener-
ated sequence of pose and the corresponding pose from input
sequence, imposing smoothness constraint of the sequence.
Here, we proposed the following loss function.

LST =

m∑
i=1

λ1φ(x
i, ỹi) + λ2φ(ỹ

i−1, ỹi) + ε (4)

in which λ1 and λ2 are importance factors of conditioning and
smoothness terms, ε is a small positive constant, and φ(.) is
the mean-squared distance of the spatial location and veloc-
ity of the main joins. Here, the main joints are detected us-
ing spatiotemporal naive-bayes nearest neighbor (ST-NBNN
[23]) of the input sequence x that uses a bilinear classifier to
learn spatio-temporal weights for important spatial joints and
temporal stages in the framework of NBNN [24].

3.3. Architecture

Pose Embedding: To handle the large imbalance in the num-
ber of the videos for different action categories, Lin et al. [13]
employed a neural autoencoder to learn a compact represen-
tation of human motions. Here, the pose in each frame is
defined by the joint rotation matrices of the BVH (BioVi-
sion Hierarchy) representation of the animation sequence in
Quaternion format (R21×4 for each pose). We trained a L1-
sparse autoencoder [25] on the pose data, to reduce the di-
mensionality while capturing some spatial relationship in the
represented skeleton (Figure 2).

Fig. 2. Sparse autoencoder used for pose embedding
Generator: The generator is to learn the distribution of input
videos from human actions, generate realistic samples, and
fool a real/fake discriminator in doing so. In this work, each
action sequence has k frames, which need k LSTM cells to
learn the strong semantic and loose spatiotemporal alignment
between input and output sequence. The first layer in the gen-
erator network maps the 50D input (input pose embedding
x ∈ R20 concatenated with Gaussian noise vector z ∈ R30) to
the kD LSTM cells. After the second BiLSTM layer, another

fully connected layer (+ dropout) converts the cell outputs to
R21×4 (Fig. 3) to be reshaped into a BVH animation.

Fig. 3. Generator architecture to generate joints rotation ma-
trices from input pose embeddings x and random noise z.
Discriminator: To determine whether a sequence of poses
comes from real human actions or from the generator, we
used a spatiotemporal graph convolution network (ST-GCN)
architecture, as proposed by [26]. In this GCN, the sequence
of poses is represented with a graph in which all nodes of the
pose in time t are connected with intra-body edges based on
the body hierarchy proposed in BVH format. Corresponding
joints in immediate times frames t− 1 and t+1 are also con-
nected via inter-frame edges. The input of the ST-GCN is the
joint coordinates w.r.t. the hip position, calculated based on
the rotation matrices and the standard character limb lengths
(the distance between two joints) defined for each frame in
the BVH animation abstraction format. A global pooling (to
handle the input sequences with indefinite length) is then per-
formed on the ST-GCN’s output tensor followed by two dense
layers to determine if a sequence is from real action data or
synthesized by the generator (Figure 4).

Fig. 4. Discriminator architecture, conditioned on input pose
embeddings x and detects if the pose ỹ is real or fake. The
network consists of 9 ST-GCN layers, each followed by a
dropout layer, and pooled every 3 layers. The residual con-
nections is applied to each convolution block.

3.4. Dataset

To create a rich database to train pose embedding, action
generator, and the discriminator, we gathered real action se-
quences in the form of videos and motion capture data. The
data are downsampled to 5 fps, and the results are converted
into 21-joint BVH format. Long sequences are trimmed to a
maximum of 300 frames. We gather video sequences from
different publicly available datasets:



• Emotional Body Motion database [27] that focuses on emo-
tion expression in human-human interaction using MoCap;

• NTU-RGB+D 120 [28] that is captured with 3 Kinect V2
concurrently and comes with 3D skeletal data;

• Kinetics Dataset [29] that is a high-quality dataset of
YouTube video URLs which include a diverse range of
focused human actions for which the 3D estimation of the
joint locations are estimated using HMR [30];

• KIT Motion Language Dataset [31] aiming to capture se-
mantic representations of human activities for which the
master motor map (MMM) data [32] is converted to BVH;

The gathered dataset includes a range of communication ges-
tures and signals, behaviors, and emotions expressed through
body motion, actions (daily actions, sports, medical condi-
tions) and interactions (with humans, environment, objects).

3.5. Implementation Details

Training STC-GAN: In our implementation, we first train
the pose embedding using 1M randomly selected poses from
the database sequences, using batch gradient descent and
learning rate of 10−4 and dropout rate of 0.5. The discrim-
inator is trained using stochastic gradient descent, with a
learning rate of 0.01 decayed by 10% every ten epochs. The
generator is trained with Adam optimizer, with a learning rate
of 0.1 that decays linearly with the progress of the training
and momentum of 0.9. The dropout probability in both G
and D is 0.5. Additionally, the discriminator is trained with
noisy labels in accordance with [7]. The activation function in
fully-connected layers are LeakyReLU (as suggested in [33]).
We set λ1, λ2 ∈ [0, 1] by cross-validation.

Fig. 5. Early in the training, the generator’s error surpass the
spatiotemporal regularization term, but after that the equilib-
rium between generator and discriminator starts to emerge.
Data Augmentation: The input data is in the form of Quater-
nion rotation vectors for each joint. The dataset in this for-
mat is easy to be manipulated and augmented with new vari-
ations ofit is observed that sample quality improves existing
sequences. To create a balanced dataset for training, we clus-
ter the existing sequences using the pose embedding, and se-
lect the most underrepresented cluster and try to modify the
sequence using one of the following operators to generate a
new sequence: (i) Mutating (additive noise), (ii) Cross-over
of the upper and lower body segments of two sequences, (iii)
Halving the join rotation span, (iv) Mirroring.The number of

Fig. 6. Subjective evaluation via mean opinion score (MOS)

clusters is gradually incremented to enable the data augmen-
tation to bootstrap fin-tune under-represented actions.
Synthetic Hard Negatives: We create unrealistic or implau-
sible action sequences or body poses and provide them to D
to improve its accuracy. To this end, we apply one of the
following operators on several sampled sequences from the
dataset: (i) Joint rotation reversal, (ii) Large random additive
joint rotation noise, (iii) halfway bouncing of the sequence.

4. EXPERIMENTAL RESULTS

Here, the experiment setups, validation method, and evalua-
tion results are introduced to investigate the performance of
the proposed STC-GAN for character animation generation.

In this experiment, we show 50 randomly selected anima-
tion from the ground truth dataset as the reference sequence.
We feed each of these sequences to STC-GAN to generate
a novel sequence. We also feed the ground truth’s label to
C-GAN to generate a competitor sequence. Finally, another
video from the dataset with the same label as the reference
sequence is retrieved. Thirty participants were asked to rate
the semantic similarity of these three sequences (from the
database, from C-GAN, and from STC-GAN) with 5-point
Likert-scale feedbacks without knowing the source of the se-
quence. They were also asked to rate the quality (realism) of
the three sequences in the same way. Figure 6 shows that,
on average, participants find sequences of STC-GAN signif-
icantly more similar to the reference animation. The results
also revealed that the generated sequences of the STC-GAN
were acceptable in terms of quality.

5. CONCLUSION

We present an end-to-end GAN for generating human mo-
tion animations cued by an input animation. We employed
sparse autoencoders to provide pose embedding for the input
sequence and developed an LSTM-based generator, a graph
convolutional network-based discriminator, a spatiotemporal
conditioning loss function based on the changes in spatial and
velocity of main joint (detected by ST-NBNN), and we trained
the system on our large-scale collected datasets with unified
3D joint annotations in BVH format. In the future, we plan
to explore physically-based controller approaches to generate
more controllable animations.
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