
Encoding High-Throughput Jpeg2000 (Htj2k) Images on A Gpu

Author:
Naman, AT; Taubman, D

Publication details:
Proceedings - International Conference on Image Processing, ICIP
v. 2020-October
pp. 1171 - 1175
9781728163956 (ISBN)
1522-4880 (ISSN)

Event details:
2020 IEEE International Conference on Image Processing (ICIP)
ELECTR NETWORK
2020-09-25 - 2020-09-28

Publication Date:
2020-10-01

Publisher DOI:
https://doi.org/10.1109/ICIP40778.2020.9190899

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_75139 in https://
unsworks.unsw.edu.au on 2024-06-04

http://dx.doi.org/https://doi.org/10.1109/ICIP40778.2020.9190899
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_75139
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

ABSTRACT

High-Throughput JPEG2000 (HTJ2K) is a new addition to the
JPEG2000 suite of coding tools; it has been recently approved as

Part-15 of the JPEG2000 standard, and the JPH file extension has
been designated for it. The HTJ2K employs a new “fast” block

coder that can achieve higher encoding and decoding throughput
than a conventional JPEG2000 (C-J2K) encoder. The higher
throughput is achieved because the HTJ2K codec processes

wavelet coefficients in a smaller number of steps than C-J2K.
Moreover, the HTJ2K block coder is also more amenable to

parallelizable high-speed software and hardware implementations.
The HTJ2K retains most of the features and capabilities of

JPEG2000, and it also supports lossless transcoding between
HTJ2K and already compressed C-J2K images. Quality scalability
however is more limited than C-J2K. In a recent work, we presented

preliminary performance results for decoding HTJ2K images on a
GPU. In this work, we present a GPU-based HTJ2K encoder; we

also present early encoding results for such an encoder, showing
that it is possible to encode 4K 4:4:4 HDR videos at more than 70
frames per second (fps) on a low-end card, while a high-end GPU

can encode such videos at more than 400 fps.

 Index Terms— JPEG 2000, JPH, Image coding, Graphical

processing unit, Low complexity

1. INTRODUCTION

Due to its features, flexibility, and efficiency, the JPEG2000 image

compression format has proven to be very successful for certain

applications; these include digital cinema, medical imaging, remote

sensing, and broadcast content mastering. To appreciate HTJ2K, we

need to delve more into the design of C-J2K [1]. The C-J2K pipeline

is composed of three main stages: color transform, wavelet

transform, and block coding (or entropy coding). The color

transform attempts to represent color images in a color space that

is more amenable to compression from the human visual system

point of view. Then, the wavelet transform decomposes each color

component into a set of subbands, exploiting spatial redundancy.

Each subband is then quantized and partitioned into a set of disjoint

rectangular or square blocks, known as codeblocks. Each

codeblock is then independently encoded by the block coder.

 In C-J2K, the most computationally demanding stage is the

block coder. The C-J2K block coder is a fractional bitplane adaptive

arithmetic coder. Each bitplane undergoes three coding passes;

these are known as the significance propagation pass (SPP), the

magnitude refinement pass (MRP), and the cleanup pass (CUP).

Details of these passes can be found in [1], [2]. These passes are

shown in Fig. 1. The computational complexity arises from visiting

(or processing) each wavelet coefficient in multiple passes;

additionally, the arithmetic coder is a serial machine, making

parallelization hard if not impossible.

 To improve encoding or decoding speed, a C-J2K encoder can

use the “BYPASS” mode, whereby data generated by the SPP and

MRP passes are stored as is, without entropy coding; this approach

improves speed but reduces the coding efficiency by a small

amount. Another approach is to employ multiple processing cores;

this is possible because codeblocks are encoded independently of

each other.

 The HTJ2K [3] introduces a new block coder that is an order of

magnitude faster than C-J2K block coder for lossy compression,

and even more for lossless coding. This improvement in speed

comes with a small reduction in coding efficiency. The reader is

referred to [4] for speedup and coding efficiency results. The

HTJ2K block coder speedup is achieved using a newly defined CUP

that encodes multiple bitplanes in one pass. Importantly, the design

of the HTJ2K coder permits practical software and hardware

designs that can exploit parallel processing techniques within a

codeblock.

 HTJ2K supports most of the features of C-J2K, except for

quality scalability where limited support is provided. For many

applications, resolution scalability can serve as a proxy for quality

scalability. HTJ2K also supports lossless transcoding between

HTJ2K and already compressed C-J2K codestreams. This enables

compute constrained systems, for example, to employ HTJ2K

image compression when they are capturing images; these images

can then be transcoded to C-J2K for archival or dissemination over

the Internet using JPIP [5].

 The earliest implementation of C-J2K on a GPU is perhaps by

Fürst et al. [6]. Nowadays, commercial GPU implementations are

available from Comprimato [7] and Fastvideo [8]. To get more

speed from a GPU, some researchers chose to modify the block

Bitplanes MSB MSB-1 MSB-2 ... LSB

C-J2K

HTJ2K

ENCODING HIGH-THROUGHPUT JPEG2000 (HTJ2K) IMAGES ON A GPU

Aous Thabit Naman and David Taubman

School of Electrical Engineering and Telecommunications,

The University of New South Wales (UNSW), Sydney, Australia

SPP
MRP CUP

CUP

SPP
MRP

CUP

SPP
MRP

SPP
MRP

CUP

Fig. 1. Coding passes in C-J2K and HTJ2K.

coder [9], [10], and the entropy coder itself [9], breaking

compatibility with C-J2K. By contrast, HTJ2K deliberately adopts

a coding pass strategy that enables lossless transcoding between

HTJ2K and C-J2K.

 For fast image coding, the ISO JTC1/SC29/WG1 working

group has recently developed the JPEG-XS standard [11], to server

as a mezzanine-level image coder for video transmission over

managed media networks. The main target applications of JPEG-

XS is hardware infrastructure in a studio. While we compared GPU

decoding performance of JPEG-XS with HTJ2K in [12], encoding

performance is not available.

 In a previous work [12], we presented results for HTJ2K

decoding on a GPU, which show that it is possible to decode

hundreds of 4K 4:4:4 HDR video frames per second on the high-

end GTX1080 GPU. In this work, we present a GPU-based HTJ2K

encoder.

 The rest of this paper is organized as follows. In Section 2, we

introduce the HTJ2K codestream. In Section 3, we detail our GPU-

based HTJ2K design, and in Section 4, we our present experimental

results. Section 5 states our conclusions.

2. OVERVIEW OF HTJ2K CODESTREAM

2.1. HTJ2K codestream segments

The HTJ2K codestream usually has 1, 2, or 3 coding passes, as

depicted in Fig. 1; these are a CUP, followed by an optional SPP,

which can be followed by an optional MRP. The option to include

SPP and MRP in the HTJ2K codestream facilitates transcoding

between HTJ2K and C-J2K, and also provides more potential

termination points in the codestream for the post-compression rate-

distortion optimization (pcRDO) step.

 Fig. 2 shows the segments of a HTJ2K codestream. The CUP is

composed of a magnitude-sign (MagSgn) segment that grows

forward, a MEL segment that grows forward, and a VLC segment

that grows backward. The last two bytes in the CUP contain a

pointer to the start of the MEL segment. For convenience, we refer

to the SPP, which grows forward, and the MRP, which grows

backward, together as the refinement. The lengths for the CUP and

the refinement are communicated in their precinct’s header. The

structure of the HTJ2K codestream with its many identifiable entry

points enables a codec to choose the order in which it processes

these segments, and also provides multiple opportunities for

parallelism. This work does not employ the SPP and MRP, and

therefore we will pay less attention to them in the rest of this work.

2.2. HTJ2K basic coding structure

The HTJ2K block coder processes quantized wavelet coefficients in

2x2 blocks, known as quads; these quads are visited in a raster order

as shown in Fig. 3. A codeblock of width 𝑊 and height 𝐻 contains

𝑊𝑄 × 𝐻𝑄 quads, where 𝑊𝑄 = ⌈𝑊/2⌉ and 𝐻𝑄 = ⌈𝐻/2⌉ . We write

𝒬𝑞 for a quad, where 𝑞 = 0,1, … , 𝑊𝑄 ⋅ 𝐻𝑄 − 1 . We also write 𝜇𝑛

for the magnitude of a quantized wavelet coefficient 𝑥𝑛, and 𝑠𝑛 ∈
{0,1} for its sign. The subscript 𝑛 is equal to 4𝑞 + 𝑗, where 𝑗 is a

quad subindex as shown in Fig. 3.

 The coding efficiency in HTJ2K comes from efficiently coding

the locations of significant coefficients (i.e., those for which 𝜇𝑛 >
0) and the number of bits needed to represent them. This

information is communicated mainly by the VLC segment while

the MEL segment plays a complementary role as explained in

Section 2.4. The values of significant coefficients are packed in the

MagSgn segment without coding.

 HTJ2K codecs communicate significant coefficient locations

and the number of bits needed on a per quad basis. Here, we write

𝜎𝑛 ∈ {0,1} for the significance state of a coefficient 𝑥𝑛, and 𝐸𝑛 for

its exponent, which is equal to ⌈log2𝜇𝑛⌉ + 1 when 𝜇𝑛 > 0, and 0

otherwise. The value 𝐸𝑛 − 1 is the minimum number of bits needed

to represent the value 𝜇𝑛 − 1 . Then, for a quad 𝒬𝑞 , significant

coefficient locations 𝜌𝑞 is given by

𝜌𝑞 = 𝜎4𝑞 + 2 ∙ 𝜎4𝑞+1 + 4 ∙ 𝜎4𝑞+2 + 8 ∙ 𝜎4𝑞+3

and the maximum exponent is denoted by

𝐸𝑞
𝑚𝑎𝑥 = max{𝐸4𝑞 , 𝐸4𝑞+1, 𝐸4𝑞+2, 𝐸4𝑞+3}

2.3. The VLC segment

The VLC segment carries context-adaptive Huffman codewords

CxVLC interleaved with offsets 𝑢𝑞. The VLC context 𝑐𝑞 for a quad

is shown in Fig. 4a for non-initial rows of quads; the first row of

quads uses a different context as detailed in [3]. Decoding a CxVLC

codeword for a quad 𝒬𝑞 reveals the significant locations 𝜌𝑞 for that

quad and a bit, known as the 𝑢𝑞
off bit, that indicates the existence of

𝑢𝑞. Additionally, it reveals EMB patterns 𝜖𝑞
k and 𝜖𝑞

1; these patterns

can signal all, some, or none of the significant coefficients that have

their most significant bit (MSB) set. The existence of EMB patterns

improves coding efficiency slightly by reducing the number of bits

that needs to be communicated in the MagSgn segment at the

expense of longer CxVLC codewords.

 The maximum exponent 𝐸𝑞
𝑚𝑎𝑥 is not communicated directly,

but rather, a predict and increase strategy is employed to obtain an

upper bound 𝑈𝑞 for it. Here, a predictor 𝜅𝑞 is generated. For a quad

𝒬𝑞, this predictor is obtained from coefficient exponents 𝐸𝑛 in the

previous row of coefficients, as shown in Fig. 4b, while a value of

1 is used for the initial (or first) row of quads. Then, the upper bound

𝑈𝑞 = max{𝐸𝑞
𝑚𝑎𝑥 , 𝜅𝑞} is obtained using

𝑈𝑞 = {
𝑢𝑞 + 𝜅𝑞 ,
𝜅𝑞 ,

𝑢𝑞
off = 1

𝑢𝑞
off = 0

Fig. 2. The segments of a HTJ2K codestream. The last two bytes of

the cleanup pass contain a pointer to the start of the MEL segment.

MEL
bytestream

MRP
bytestream

SPP
bytestream

VLC
bytestream

MagSgn
bytestream

Cleanup

Refinement

Fig. 3. HTJ2K encoder processes samples in quads. The bottom-

right corner of each sample shows the subindex 𝑗.

quad 0 quad 1 quad 𝑊𝑄 − 1

next row of quads

0 2

1 3

0 2

1 3

0 2

1 3

The number of bits that are communicated in the MagSgn segment

for a coefficient 𝑥𝑛 within quad 𝒬𝑞 is 𝑈𝑞 , except when the EMB

patterns reduce this number by one. Not using coefficient exponents

𝐸𝑛 of coefficients to the left of a quad for evaluating 𝑈𝑞 enables

parallel processing of complete rows of quads.

2.4. The MEL segment

The MEL coder is an adaptive run length coder that can efficiently

code runs of 0 events. The MEL coder in JPEG-LS [13], which

produces the MELCODE, has 32 states while in the HTJ2K it has

13 states, which helps reduce complexity. Each state 𝑘 of the MEL

coder is associated with an exponent 𝑒𝑘, and a threshold 𝜏𝑘 = 2𝑒𝑘.

A codeword of “0” signals a run of 𝜏𝑘 0 events, while a codeword

of “1” indicates a run of 0 events terminated with a 1 event; the “1”

codeword is followed by 𝑒𝑘 bits of data specifying the number of 0

events before the terminating 1 event. Each run, complete or

terminated, adapts the state of the MEL coder.

 The MEL code facilitates efficient coding of runs of all-zero

quads, which occur in codeblocks in which most coefficients are

quantized to zero. When the VLC context 𝑐𝑞 of quad 𝒬𝑞 is zero (all

the neighborhood coefficients shown in Fig. 4a are zero), a 0 event

in the MEL code indicates that quad 𝒬𝑞 is a quad with no significant

coefficients; alternatively, a 1 event indicates that it has significant

coefficients and the CxVLC needs to be decoded.

2.5. The MagSgn segment

For each significant coefficient, the MagSgn segment stores that

coefficient’s value 𝜇𝑛 followed by its sign 𝑠𝑛 ; however, EMB

patterns can carry the MSB for some of these coefficients and

therefore there is no need to store them in this segment. All

segments undergo a bit stuffing step that prevents byte values larger

than hexadecimal 8F from appearing after a byte value of FF.

3. GPU-BASED HTJ2K ENCODER

3.1. HTJ2K encoder setup

Only color images of 3840x2160 pixel resolution are explored in

this work. For such an image, we expect to have 6321 codeblocks

of 64x64 pixels when 5 levels of decomposition are employed. The

host (or CPU) is responsible of creating lists of codeblocks that

needs to be encoded; these lists include the address of wavelet

coefficients, strides, block dimensions, … etc.

 The GPU-based HTJ2K encoder can be used in many scenarios.

In one scenario, the host uploads original, uncompressed images to

the device (or GPU), which generates encoded codeblocks and

makes them available to the host. The host downloads these

codeblocks, packages them into proper HTJ2K files and save them

to disk. In another scenario, the host uploads compressed HTJ2K to

the GPU; the GPU would then decode these images [12], apply any

desired processing to them, and then encode back to HTJ2K. The

host would then package them into proper HTJ2K and save them

back to disk.

 For the first scenario, the bottleneck for a high-end GPU is

currently the bandwidth of the PCIe interface that connects the

GPU to the motherboard of the host; this is the most common way

of interfacing a GPU to a host. Table 1 lists the maximum number

of frames per second that can be transferred to a GPU. The PCIe

interface is bidirectional, and the stated numbers are for each

direction. The most commonly available PCIe interface is version

3.0. Latest offerings from AMD (CPUs and motherboards) support

version 4.0, but nVidia cards are yet to support this interface. We

expect to see some support for PCIe version 5.0 near the end of

2021, which doubles bandwidth yet again. From this, it can be seen

that the PCIe bottleneck issue should be alleviated in a couple of

years’ time. For the second scenario, this is not an issue.

3.2. Color transform and wavelet analysis kernels

While it is possible to write a kernel to perform color transform

only, such a kernel would waste the GPU’s memory bandwidth. In

this work, as in [12], color transformation is performed by the first-

level DWT analysis kernel, which uses 113 registers when the

irreversible CDF97 wavelet is employed. Subsequent DWT

decompositions do not need a color transform, and therefore

employ a simpler kernel which uses 56 registers. We refer to the

color and the DWT analysis kernels collectively by KCT+DWT.

These kernels also quantize the wavelet coefficients and put them

in the sign-magnitude format.

 For the wavelet analysis, we employ the approach proposed in

[14]; each thread in a warp processes two columns, and the number

of rows processed by a kernel invocation is user configurable. Here,

each invocation produces 64 rows of wavelet coefficients.

 The KCT+DWT kernels are memory-bound when wavelet

coefficients are represented as 32-bit numbers; in this work, we use

32-bit floats for coefficients awaiting transformation and 32-bit

integers for quantized coefficients. The use of 32-bit representation

is more than what is needed for 12-bit image data; in fact, with 5

levels of decomposition, 16 bits should be enough.

3.3. Cleanup pass kernels

Due to the flexible design of the HTJ2K cleanup pass, a practical

Table 1. PCI-Express achievable download speed expressed in

frames per second; the PCIe protocol has around 25% overhead,

whereby x16 PCI 3.0 can only achieve around 12GB/s of transfer

bandwidth. Images with 12 bits/sample use 2 bytes/sample. PCIe

interface is bidirectional; these numbers are for each direction.

 Previous Gen. Current Gen. This Year’s Gen.

Resolution x16 PCIe 2.0 x16 PCIe 3.0 x16 PCIe 4.0

4K 4:2:2 8b 361.7 fps 723.4 fps 1446.8 fps

4K 4:4:4 8b 241.1 fps 482.3 fps 964.5 fps
4K 4:2:2 12b 180.8 fps 361.7 fps 723.4 fps

4K 4:4:4 12b 120.6 fps 241.1 fps 482.3 fps

8K 4:4:4 12b 30.1 fps 60.3 fps 120.6 fps

Fig. 4. Left: Context neighborhood for non-initial row of quads.

Right: Neighborhood exponents used for estimating predictor 𝜅𝑞

for non-initial line of quads.

quad q

𝜎𝑞
nf 𝜎𝑞

ne 𝜎𝑞
n

𝜎𝑞
w

𝜎𝑞
sw

𝜎𝑞
nw

a) Context neighborhood for non-initial lines
𝜌𝑞

quad q

𝐸𝑞
nf 𝐸𝑞

ne 𝐸𝑞
n

𝐸𝑞
nw

b) Neighborhood exponents used for
predictor 𝜅𝑞 estimation for non-initial lines

encoder can choose among many possible approaches. Here, we

choose to implement the cleanup pass in 4 kernels; we refer to these

kernels as KMagSgn, KVLC, KMEL, KVCPY.

 The KMagSgn kernel reads quantized wavelet coefficients and

processes them. Each thread in a warp processes 2 columns. If the

nominal width of a codeblock is smaller than 64 columns, then a

single warp handles multiple codeblocks; although this is not ideal

because the optimal program flow for different codeblocks can be

different, this achieves better utilization of hardware. This kernel

uses 64 registers and around one byte of shared memory per 2

columns for the context information shown in Fig. 4.

 The KMagSgn kernel generates the bitstuffed MagSgn segment

together with its length and store them in the GPU’s global memory.

It also generates and stores state information needed by the

subsequent KVLC kernel; these include CxVLC Huffman

codewords, offsets 𝑢𝑞 , and which quads have no significant

coefficients.

 The KVLC kernel reads the state information generated by the

KMagSgn kernel, and generates the bitstuffed VLC segment,

storing it in a separate global GPU memory buffer, together with its

length. This kernel also packs MEL events into a contiguous stream

of bits, storing them in global memory as well. This kernel uses 40

registers.

 The MEL kernel reads packed MEL events and generates a

bitstuffed MEL segment. Since MEL coding is a serial operation,

each thread in a warp operates on MEL events from one codeblock.

The MEL kernel stores the generated MEL segment at the end of

the MagSgn segment. This kernel uses 30 registers.

 The KVCPY kernel copies the VLC segment to the end of the

MEL segment, potentially overlapping the terminating bytes of

these two segments [3]. It also generates and store the pointer at

the end of the VLC segment that points to the start of the MEL

segment, which is shown in Fig. 2 and explained in Section 2.1.

This kernel uses 26 registers.

 Due to time constraint, as of this writing, we do not have a

mechanism to detect codeblocks with no significant coefficients

(zero codeblocks); such a mechanism can reduce execution time for

all kernels. Despite this, Section 4 shows that the design can still

encode 100s of frames a second.

4. EXPERIMENTAL RESULTS

Experimental results are obtained using the nVidia cards listed in

Table 2; these are the low-end GT1030 GDDR5, the mid-range

GTX1660Ti, and the last-generation three-year old enthusiast

GTX1080 card. All code is written in C++ to use the CUDA

framework. All results are obtained with compute capability 6.1.

 Encoding results are obtained using a quantization-based

encoder; i.e., the encoder has no rate-control mechanism. This is

reasonable since the encoder is free to choose any method that

produce legible codestream. PSNR results of such a method should

be close to what a full pcRDO step produces, especially at mid and

high bitrates. In a future work, we will explore a method, which has

been tested on CPU successfully, that can achieve rate-control with

a small increase in computational complexity.

 The performance results tabulated in Table 3 are obtained

encoding the 4K 4:4:4 12bit test sequence ARRI AlexaDrums.

64x64 and 32x32 codeblocks are used with the irreversible CDF97

wavelet and 5 levels of wavelet decomposition. No overlap in frame

encoding is employed. Results are obtained encoding 1000 frames.

Lossless results are simulated using KCT+DWT time and the time

needed to encode codeblocks that are produced by a lossless

HTJ2K encoder. The table also lists results for JPEG2000 encoding

[7] on the nVidia Quadro P5000, which is equivalent to the

GTX1080, but at unknown bitrate and codeblock size. For CPU

encoding performance, a 4-core i7-6700 CPU with a base clock of

3.4GHz, can encode around 93 frames per second at 1 bits/pixel.

For the sequence tested here, the rate-distortion performance (BD-

rate, BD-PSNR) of HTJ2K compared to JPEG2000, both using

their optimal setting, is (9.6%, −0.7dB).

5. CONCLUSIONS

In this work, we have presented a brief overview of the HTJ2K

standard. HTJ2K is built on JPEG2000 and provides most of its

features; it also supports lossless transcoding with JPEG2000.

Importantly, it provides many fold increase in decode and encode

speed compared to the original JPEG2000 on CPU and GPU. We

have also presented a GPU-based implementation of an HTJ2K

encoder, with preliminary performance results. We have shown

that a low-end card can encode 4K 4:4:4 HDR video frames at more

than 70 fps, while a high-end card can encode such frames at more

than 400 fps.

Table 2. The GPU cards used in this work. †compute capability.

Card

CUDA

Cores

Boost

Clock
(MHz)

Mem.

BW
(GB/s)

Attainable

Mem. BW
(GB/s)

PCIe

3.0
Lanes

CC†

GT1030 384 1468 48 ~40 x4 6.1

GTX1660Ti 1536 1845 288 ~240 x16 7.5

GTX1080 2560 1847 320 ~240 x16 6.1

Table 3. Encoding performance of the HTJ2K decoder for the 4K

4:4:4 12bit video test sequence ARRI AlexaDrums. “1b” is for 1

bit/pixel and “ls” is for lossless. †for [7], results at an unknown

bitrate and codeblock size; they are obtained on nVidia Quadro

P5000, which is equivalent to GTX1080.
 GT1030 GTX1660Ti GTX1080

Kernel 1b ls 1b ls 1b ls

 KCT+DWT time to decompose one frame (ms)

KCT+DWT 6.233 6.233 1.410 1.410 1.304 1.304

 Time to encode one frame (ms) using 64x64 codeblocks

KMagSgn 3.243 4.338 0.698 1.089 0.551 0.647

KVLC 1.105 1.432 0.307 0.381 0.195 0.224

KMEL 0.275 0.303 0.092 0.026 0.102 0.026

KVCPY 0.115 0.096 0.028 0.079 0.022 0.076

 Frames per second

 90 80 391 332 455 435

 Time to encode one frame (ms) using 32x32 codeblocks

KMagSgn 3.263 4.350 0.794 2.013 0.576 0.815

KVLC 1.434 1.530 0.377 0.630 0.374 0.463

KMEL 0.496 0.366 0.107 0.093 0.125 0.100

KVCPY 0.370 0.568 0.077 0.129 0.064 0.126

 Frames per second

 84 76 358 230 405 353

 Frames per second

JPEG2K [7] NA NA 40†

6. REFERENCE

[1] ISO/IEC, “15444-1:2016 Information technology -- JPEG

2000 image coding system: Core coding system.” 2016.

[2] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image

Compression Fundamentals, Standards and Practice.

Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[3] ISO/IEC, “15444-15:2019 Information technology -- JPEG

2000 image coding system -- Part 15: High-Throughput JPEG

2000.” 2019.

[4] D. Taubman, A. Naman, and R. Mathew, “High Throughput

Block Coding in the HTJ2K Compression Standard,” in 2019

IEEE International Conference on Image Processing (ICIP),

Sep. 2019, pp. 1079–1083, doi: 10.1109/ICIP.2019.8803774.

[5] ISO/IEC, “15444-9:2005 Information technology -- JPEG

2000 image coding system: Interactivity tools, APIs and

protocols.” 2005.

[6] N. Fürst, A. Weiß, M. Heide, S. Papandreou, and A. Balevic,

“CUJ2K: A JPEG2000 Encoder on CUDA,” 2009.

http://cuj2k.sourceforge.net/ (accessed Feb. 04, 2020).

[7] Comprimato, “UltraJ2KTM - JPEG2000 SDK.” [Online].

Available at https://comprimato.com/products/comprimato-

jpeg2000/ (accessed Feb. 04, 2020).

[8] Fastvideo LLC, “JPEG2000 codec on GPU,” Fast Video GPU

Image Processing. [Online]. Available at

https://www.fastcompression.com/products/gpu-

jpeg2000.htm (accessed Feb. 04, 2020).

[9] P. Enfedaque, F. Aulí-Llinàs, and J. C. Moure, “GPU

Implementation of Bitplane Coding with Parallel Coefficient

Processing for High Performance Image Compression,” IEEE

Trans. Parallel Distrib. Syst., vol. 28, no. 8, pp. 2272–2284,

Aug. 2017, doi: 10.1109/TPDS.2017.2657506.

[10] F. Wei, Q. Cui, and Y. Li, “Fine-Granular Parallel EBCOT and

Optimization with CUDA for Digital Cinema Image

Compression,” in 2012 IEEE International Conference on

Multimedia and Expo, Jul. 2012, pp. 1051–1054, doi:

10.1109/ICME.2012.115.

[11] ISO/IEC, “21122-1:2019 Information technology -- Low-

latency lightweight image coding system -- Part 1: Core

coding system.” 2019.

[12] A. T. Naman and D. Taubman, “Decoding High-Throughput

JPEG2000 (HTJ2K) On A GPU,” in 2019 IEEE International

Conference on Image Processing (ICIP), Sep. 2019, pp.

1084–1088, doi: 10.1109/ICIP.2019.8803729.

[13] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: a low

complexity, context-based, lossless image compression

algorithm,” in Proceedings of Data Compression Conference

- DCC ’96, Mar. 1996, pp. 140–149, doi:

10.1109/DCC.1996.488319.

[14] P. Enfedaque, F. Aulí-Llinàs, and J. C. Moure,

“Implementation of the DWT in a GPU through a Register-

based Strategy,” IEEE Trans. Parallel Distrib. Syst., vol. 26,

no. 12, pp. 3394–3406, Dec. 2015, doi:

10.1109/TPDS.2014.2384047.

