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ABSTRACT 

High-Throughput JPEG2000 (HTJ2K) is a new addition to the 
JPEG2000 suite of coding tools; it has been recently approved as 

Part-15 of the JPEG2000 standard, and the JPH file extension has 
been designated for it.  The HTJ2K employs a new “fast” block 

coder that can achieve higher encoding and decoding throughput 
than a conventional JPEG2000 (C-J2K) encoder. The higher 
throughput is achieved because the HTJ2K codec processes 

wavelet coefficients in a smaller number of steps than C-J2K. 
Moreover, the HTJ2K block coder is also more amenable to 

parallelizable high-speed software and hardware implementations.  
The HTJ2K retains most of the features and capabilities of 

JPEG2000, and it also supports lossless transcoding between 
HTJ2K and already compressed C-J2K images. Quality scalability 
however is more limited than C-J2K. In a recent work, we presented 

preliminary performance results for decoding HTJ2K images on a 
GPU.  In this work, we present a GPU-based HTJ2K encoder; we 

also present early encoding results for such an encoder, showing 
that it is possible to encode 4K 4:4:4 HDR videos at more than 70 
frames per second (fps) on a low-end card, while a high-end GPU 

can encode such videos at more than 400 fps. 

 Index Terms— JPEG 2000, JPH, Image coding, Graphical 

processing unit, Low complexity 

1. INTRODUCTION 

Due to its features, flexibility, and efficiency, the JPEG2000 image 

compression format has proven to be very successful for certain 

applications; these include digital cinema, medical imaging, remote 

sensing, and broadcast content mastering. To appreciate HTJ2K, we 

need to delve more into the design of C-J2K [1]. The C-J2K pipeline 

is composed of three main stages: color transform, wavelet 

transform, and block coding (or entropy coding).  The color 

transform attempts to represent color images in a color space that 

is more amenable to compression from the human visual system 

point of view.  Then, the wavelet transform decomposes each color 

component into a set of subbands, exploiting spatial redundancy.  

Each subband is then quantized and partitioned into a set of disjoint 

rectangular or square blocks, known as codeblocks. Each 

codeblock is then independently encoded by the block coder. 

 In C-J2K, the most computationally demanding stage is the 

block coder. The C-J2K block coder is a fractional bitplane adaptive 

arithmetic coder.  Each bitplane undergoes three coding passes; 

these are known as the significance propagation pass (SPP), the 

magnitude refinement pass (MRP), and the cleanup pass (CUP).  

Details of these passes can be found in [1], [2].  These passes are 

shown in Fig. 1.  The computational complexity arises from visiting 

(or processing) each wavelet coefficient in multiple passes; 

additionally, the arithmetic coder is a serial machine, making 

parallelization hard if not impossible. 

 To improve encoding or decoding speed, a C-J2K encoder can 

use the “BYPASS” mode, whereby data generated by the SPP and 

MRP passes are stored as is, without entropy coding; this approach 

improves speed but reduces the coding efficiency by a small 

amount.  Another approach is to employ multiple processing cores; 

this is possible because codeblocks are encoded independently of 

each other. 

 The HTJ2K [3] introduces a new block coder that is an order of 

magnitude faster than C-J2K block coder for lossy compression, 

and even more for lossless coding.  This improvement in speed 

comes with a small reduction in coding efficiency. The reader is 

referred to [4] for speedup and coding efficiency results.  The 

HTJ2K block coder speedup is achieved using a newly defined CUP 

that encodes multiple bitplanes in one pass. Importantly, the design 

of the HTJ2K coder permits practical software and hardware 

designs that can exploit parallel processing techniques within a 

codeblock. 

 HTJ2K supports most of the features of C-J2K, except for 

quality scalability where limited support is provided. For many 

applications, resolution scalability can serve as a proxy for quality 

scalability. HTJ2K also supports lossless transcoding between 

HTJ2K and already compressed C-J2K codestreams. This enables 

compute constrained systems, for example, to employ HTJ2K 

image compression when they are capturing images; these images 

can then be transcoded to C-J2K for archival or dissemination over 

the Internet using JPIP [5]. 

 The earliest implementation of C-J2K on a GPU is perhaps by 

Fürst et al.  [6].  Nowadays, commercial GPU implementations are 

available from Comprimato [7] and Fastvideo [8].  To get more 

speed from a GPU, some researchers chose to modify the block 
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Fig. 1. Coding passes in C-J2K and HTJ2K. 



  

coder [9], [10], and the entropy coder itself [9], breaking 

compatibility with C-J2K. By contrast, HTJ2K deliberately adopts 

a coding pass strategy that enables lossless transcoding between 

HTJ2K and C-J2K. 

 For fast image coding, the ISO JTC1/SC29/WG1 working 

group has recently developed the JPEG-XS standard [11], to server 

as a mezzanine-level image coder for video transmission over 

managed media networks. The main target applications of JPEG-

XS is hardware infrastructure in a studio.  While we compared GPU 

decoding performance of JPEG-XS with HTJ2K in [12], encoding 

performance is not available. 

 In a previous work [12], we presented results for HTJ2K 

decoding on a GPU, which show that it is possible to decode 

hundreds of 4K 4:4:4 HDR video frames per second on the high-

end GTX1080 GPU.  In this work, we present a GPU-based HTJ2K 

encoder.  

 The rest of this paper is organized as follows. In Section 2, we 

introduce the HTJ2K codestream.  In Section 3, we detail our GPU-

based HTJ2K design, and in Section 4, we our present experimental 

results.  Section 5 states our conclusions. 

2. OVERVIEW OF HTJ2K CODESTREAM 

2.1. HTJ2K codestream segments 

The HTJ2K codestream usually has 1, 2, or 3 coding passes, as 

depicted in Fig. 1; these are a CUP, followed by an optional SPP, 

which can be followed by an optional MRP. The option to include 

SPP and MRP in the HTJ2K codestream facilitates transcoding 

between HTJ2K and C-J2K, and also provides more potential 

termination points in the codestream for the post-compression rate-

distortion optimization (pcRDO) step. 

 Fig. 2 shows the segments of a HTJ2K codestream.  The CUP is 

composed of a magnitude-sign (MagSgn) segment that grows 

forward, a MEL segment that grows forward, and a VLC segment 

that grows backward. The last two bytes in the CUP contain a 

pointer to the start of the MEL segment.  For convenience, we refer 

to the SPP, which grows forward, and the MRP, which grows 

backward, together as the refinement.  The lengths for the CUP and 

the refinement are communicated in their precinct’s header. The 

structure of the HTJ2K codestream with its many identifiable entry 

points enables a codec to choose the order in which it processes 

these segments, and also provides multiple opportunities for 

parallelism.  This work does not employ the SPP and MRP, and 

therefore we will pay less attention to them in the rest of this work. 

2.2. HTJ2K basic coding structure 

The HTJ2K block coder processes quantized wavelet coefficients in 

2x2 blocks, known as quads; these quads are visited in a raster order 

as shown in Fig. 3. A codeblock of width 𝑊 and height 𝐻 contains 

𝑊𝑄 × 𝐻𝑄  quads, where 𝑊𝑄 = ⌈𝑊/2⌉  and 𝐻𝑄 = ⌈𝐻/2⌉ . We write 

𝒬𝑞  for a quad, where 𝑞 = 0,1, … , 𝑊𝑄 ⋅ 𝐻𝑄 − 1 . We also write 𝜇𝑛 

for the magnitude of a quantized wavelet coefficient 𝑥𝑛, and 𝑠𝑛 ∈
{0,1} for its sign. The subscript 𝑛 is equal to 4𝑞 + 𝑗, where 𝑗 is a 

quad subindex as shown in Fig. 3.  

 The coding efficiency in HTJ2K comes from efficiently coding 

the locations of significant coefficients (i.e., those for which 𝜇𝑛 >
0 ) and the number of bits needed to represent them. This 

information is communicated mainly by the VLC segment while 

the MEL segment plays a complementary role as explained in 

Section 2.4. The values of significant coefficients are packed in the 

MagSgn segment without coding. 

 HTJ2K codecs communicate significant coefficient locations 

and the number of bits needed on a per quad basis. Here, we write 

𝜎𝑛 ∈ {0,1} for the significance state of a coefficient 𝑥𝑛, and 𝐸𝑛 for 

its exponent, which is equal to ⌈log2𝜇𝑛⌉ + 1 when 𝜇𝑛 > 0, and 0 

otherwise. The value 𝐸𝑛 − 1 is the minimum number of bits needed 

to represent the value 𝜇𝑛 − 1 .  Then, for a quad 𝒬𝑞 , significant 

coefficient locations 𝜌𝑞  is given by 

𝜌𝑞 = 𝜎4𝑞 + 2 ∙ 𝜎4𝑞+1 + 4 ∙ 𝜎4𝑞+2 + 8 ∙ 𝜎4𝑞+3 

and the maximum exponent is denoted by  

𝐸𝑞
𝑚𝑎𝑥 = max{𝐸4𝑞 , 𝐸4𝑞+1, 𝐸4𝑞+2, 𝐸4𝑞+3} 

2.3. The VLC segment 

The VLC segment carries context-adaptive Huffman codewords 

CxVLC interleaved with offsets 𝑢𝑞. The VLC context 𝑐𝑞  for a quad 

is shown in Fig. 4a for non-initial rows of quads; the first row of 

quads uses a different context as detailed in [3]. Decoding a CxVLC 

codeword for a quad 𝒬𝑞 reveals the significant locations 𝜌𝑞  for that 

quad and a bit, known as the 𝑢𝑞
off bit, that indicates the existence of 

𝑢𝑞. Additionally, it reveals EMB patterns 𝜖𝑞
k and 𝜖𝑞

1; these patterns 

can signal all, some, or none of the significant coefficients that have 

their most significant bit (MSB) set. The existence of EMB patterns 

improves coding efficiency slightly by reducing the number of bits 

that needs to be communicated in the MagSgn segment at the 

expense of longer CxVLC codewords.  

 The maximum exponent 𝐸𝑞
𝑚𝑎𝑥  is not communicated directly, 

but rather, a predict and increase strategy is employed to obtain an 

upper bound 𝑈𝑞 for it.  Here, a predictor 𝜅𝑞 is generated. For a quad 

𝒬𝑞, this predictor is obtained from coefficient exponents 𝐸𝑛 in the 

previous row of coefficients, as shown in Fig. 4b, while a value of 

1 is used for the initial (or first) row of quads. Then, the upper bound 

𝑈𝑞 = max{𝐸𝑞
𝑚𝑎𝑥 , 𝜅𝑞} is obtained using 

𝑈𝑞 = {
𝑢𝑞 + 𝜅𝑞 ,
𝜅𝑞 ,

𝑢𝑞
off = 1

𝑢𝑞
off = 0

 

Fig. 2. The segments of a HTJ2K codestream. The last two bytes of 

the cleanup pass contain a pointer to the start of the MEL segment. 
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Fig. 3. HTJ2K encoder processes samples in quads. The bottom-
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The number of bits that are communicated in the MagSgn segment 

for a coefficient 𝑥𝑛  within quad 𝒬𝑞  is 𝑈𝑞 , except when the EMB 

patterns reduce this number by one. Not using coefficient exponents 

𝐸𝑛  of coefficients to the left of a quad for evaluating 𝑈𝑞  enables 

parallel processing of complete rows of quads. 

2.4. The MEL segment 

The MEL coder is an adaptive run length coder that can efficiently 

code runs of 0 events. The MEL coder in JPEG-LS [13], which 

produces the MELCODE, has 32 states while in the HTJ2K it has 

13 states, which helps reduce complexity.  Each state 𝑘 of the MEL 

coder is associated with an exponent 𝑒𝑘, and a threshold 𝜏𝑘 = 2𝑒𝑘. 

A codeword of “0” signals a run of 𝜏𝑘 0 events, while a codeword 

of “1” indicates a run of 0 events terminated with a 1 event; the “1” 

codeword is followed by 𝑒𝑘 bits of data specifying the number of 0 

events before the terminating 1 event. Each run, complete or 

terminated, adapts the state of the MEL coder. 

 The MEL code facilitates efficient coding of runs of all-zero 

quads, which occur in codeblocks in which most coefficients are 

quantized to zero. When the VLC context 𝑐𝑞  of quad 𝒬𝑞 is zero (all 

the neighborhood coefficients shown in Fig. 4a are zero), a 0 event 

in the MEL code indicates that quad 𝒬𝑞 is a quad with no significant 

coefficients; alternatively, a 1 event indicates that it has significant 

coefficients and the CxVLC needs to be decoded. 

2.5. The MagSgn segment 

For each significant coefficient, the MagSgn segment stores that 

coefficient’s value 𝜇𝑛  followed by its sign 𝑠𝑛 ; however, EMB 

patterns can carry the MSB for some of these coefficients and 

therefore there is no need to store them in this segment. All 

segments undergo a bit stuffing step that prevents byte values larger 

than hexadecimal 8F from appearing after a byte value of FF.    

3. GPU-BASED HTJ2K ENCODER 

3.1. HTJ2K encoder setup 

Only color images of 3840x2160 pixel resolution are explored in 

this work.  For such an image, we expect to have 6321 codeblocks 

of 64x64 pixels when 5 levels of decomposition are employed.  The 

host (or CPU) is responsible of creating lists of codeblocks that 

needs to be encoded; these lists include the address of wavelet 

coefficients, strides, block dimensions, … etc.   

 The GPU-based HTJ2K encoder can be used in many scenarios. 

In one scenario, the host uploads original, uncompressed images to 

the device (or GPU), which generates encoded codeblocks and 

makes them available to the host. The host downloads these 

codeblocks, packages them into proper HTJ2K files and save them 

to disk. In another scenario, the host uploads compressed HTJ2K to 

the GPU; the GPU would then decode these images [12], apply any 

desired processing to them, and then encode back to HTJ2K.  The 

host would then package them into proper HTJ2K and save them 

back to disk. 

 For the first scenario, the bottleneck for a high-end GPU is 

currently the bandwidth of the PCIe interface that connects the 

GPU to the motherboard of the host; this is the most common way 

of interfacing a GPU to a host. Table 1 lists the maximum number 

of frames per second that can be transferred to a GPU. The PCIe 

interface is bidirectional, and the stated numbers are for each 

direction.  The most commonly available PCIe interface is version 

3.0.  Latest offerings from AMD (CPUs and motherboards) support 

version 4.0, but nVidia cards are yet to support this interface.  We 

expect to see some support for PCIe version 5.0 near the end of 

2021, which doubles bandwidth yet again. From this, it can be seen 

that the PCIe bottleneck issue should be alleviated in a couple of 

years’ time.  For the second scenario, this is not an issue. 

3.2. Color transform and wavelet analysis kernels 

While it is possible to write a kernel to perform color transform 

only, such a kernel would waste the GPU’s memory bandwidth.  In 

this work, as in [12], color transformation is performed by the first-

level DWT analysis kernel, which uses 113 registers when the 

irreversible CDF97 wavelet is employed. Subsequent DWT 

decompositions do not need a color transform, and therefore 

employ a simpler kernel which uses 56 registers.  We refer to the 

color and the DWT analysis kernels collectively by KCT+DWT.  

These kernels also quantize the wavelet coefficients and put them 

in the sign-magnitude format.   

 For the wavelet analysis, we employ the approach proposed in 

[14]; each thread in a warp processes two columns, and the number 

of rows processed by a kernel invocation is user configurable. Here, 

each invocation produces 64 rows of wavelet coefficients. 

 The KCT+DWT kernels are memory-bound when wavelet 

coefficients are represented as 32-bit numbers; in this work, we use 

32-bit floats for coefficients awaiting transformation and 32-bit 

integers for quantized coefficients.  The use of 32-bit representation 

is more than what is needed for 12-bit image data; in fact, with 5 

levels of decomposition, 16 bits should be enough. 

3.3. Cleanup pass kernels 

Due to the flexible design of the HTJ2K cleanup pass, a practical 

Table 1. PCI-Express achievable download speed expressed in 

frames per second; the PCIe protocol has around 25% overhead, 

whereby x16 PCI 3.0 can only achieve around 12GB/s of transfer 

bandwidth. Images with 12 bits/sample use 2 bytes/sample. PCIe 

interface is bidirectional; these numbers are for each direction. 

 Previous Gen. Current Gen. This Year’s Gen. 

Resolution x16 PCIe 2.0 x16 PCIe 3.0 x16 PCIe 4.0 

4K 4:2:2 8b 361.7 fps 723.4 fps 1446.8 fps 

4K 4:4:4 8b 241.1 fps 482.3 fps 964.5 fps 
4K 4:2:2 12b 180.8 fps 361.7 fps 723.4 fps 

4K 4:4:4 12b 120.6 fps 241.1 fps 482.3 fps 

8K 4:4:4 12b 30.1 fps 60.3 fps 120.6 fps 

 

Fig. 4. Left: Context neighborhood for non-initial row of quads. 

Right: Neighborhood exponents used for estimating predictor 𝜅𝑞 

for non-initial line of quads.  
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encoder can choose among many possible approaches.  Here, we 

choose to implement the cleanup pass in 4 kernels; we refer to these 

kernels as KMagSgn, KVLC, KMEL, KVCPY. 

 The KMagSgn kernel reads quantized wavelet coefficients and 

processes them. Each thread in a warp processes 2 columns.  If the 

nominal width of a codeblock is smaller than 64 columns, then a 

single warp handles multiple codeblocks; although this is not ideal 

because the optimal program flow for different codeblocks can be 

different, this achieves better utilization of hardware.  This kernel 

uses 64 registers and around one byte of shared memory per 2 

columns for the context information shown in Fig. 4. 

 The KMagSgn kernel generates the bitstuffed MagSgn segment 

together with its length and store them in the GPU’s global memory. 

It also generates and stores state information needed by the 

subsequent KVLC kernel; these include CxVLC Huffman 

codewords, offsets  𝑢𝑞 , and which quads have no significant 

coefficients. 

 The KVLC kernel reads the state information generated by the 

KMagSgn kernel, and generates the bitstuffed VLC segment, 

storing it in a separate global GPU memory buffer, together with its 

length.  This kernel also packs MEL events into a contiguous stream 

of bits, storing them in global memory as well.  This kernel uses 40 

registers. 

 The MEL kernel reads packed MEL events and generates a 

bitstuffed MEL segment.  Since MEL coding is a serial operation, 

each thread in a warp operates on MEL events from one codeblock.  

The MEL kernel stores the generated MEL segment at the end of 

the MagSgn segment. This kernel uses 30 registers. 

 The KVCPY kernel copies the VLC segment to the end of the 

MEL segment, potentially overlapping the terminating bytes of 

these two segments [3].  It also generates and store the pointer at 

the end of the VLC segment that points to the start of the MEL 

segment, which is shown in Fig. 2 and explained in Section 2.1.  

This kernel uses 26 registers. 

 Due to time constraint, as of this writing, we do not have a 

mechanism to detect codeblocks with no significant coefficients 

(zero codeblocks); such a mechanism can reduce execution time for 

all kernels. Despite this, Section 4 shows that the design can still 

encode 100s of frames a second. 

4. EXPERIMENTAL RESULTS 

Experimental results are obtained using the nVidia cards listed in 

Table 2; these are the low-end GT1030 GDDR5, the mid-range 

GTX1660Ti, and the last-generation three-year old enthusiast 

GTX1080 card.  All code is written in C++ to use the CUDA 

framework. All results are obtained with compute capability 6.1. 

 Encoding results are obtained using a quantization-based 

encoder; i.e., the encoder has no rate-control mechanism. This is 

reasonable since the encoder is free to choose any method that 

produce legible codestream.  PSNR results of such a method should 

be close to what a full pcRDO step produces, especially at mid and 

high bitrates. In a future work, we will explore a method, which has 

been tested on CPU successfully, that can achieve rate-control with 

a small increase in computational complexity. 

 The performance results tabulated in Table 3 are obtained 

encoding the 4K 4:4:4 12bit test sequence ARRI AlexaDrums. 

64x64 and 32x32 codeblocks are used with the irreversible CDF97 

wavelet and 5 levels of wavelet decomposition. No overlap in frame 

encoding is employed. Results are obtained encoding 1000 frames.  

Lossless results are simulated using KCT+DWT time and the time 

needed to encode codeblocks that are produced by a lossless 

HTJ2K encoder. The table also lists results for JPEG2000 encoding 

[7] on the nVidia Quadro P5000, which is equivalent to the 

GTX1080, but at unknown bitrate and codeblock size. For CPU 

encoding performance, a 4-core i7-6700 CPU with a base clock of 

3.4GHz, can encode around 93 frames per second at 1 bits/pixel. 

For the sequence tested here, the rate-distortion performance (BD-

rate, BD-PSNR) of HTJ2K compared to JPEG2000, both using 

their optimal setting, is (9.6%, −0.7dB). 

5. CONCLUSIONS 

In this work, we have presented a brief overview of the HTJ2K 

standard. HTJ2K is built on JPEG2000 and provides most of its 

features; it also supports lossless transcoding with JPEG2000.  

Importantly, it provides many fold increase in decode and encode 

speed compared to the original JPEG2000 on CPU and GPU. We 

have also presented a GPU-based implementation of an HTJ2K 

encoder, with preliminary performance results.  We have shown 

that a low-end card can encode 4K 4:4:4 HDR video frames at more 

than 70 fps, while a high-end card can encode such frames at more 

than 400 fps. 

Table 2. The GPU cards used in this work. †compute capability. 

 

Card 

CUDA 

Cores 

Boost 

Clock 
(MHz) 

Mem. 

BW 
(GB/s) 

Attainable 

Mem. BW 
(GB/s) 

PCIe 

3.0 
Lanes 

CC† 

GT1030 384 1468 48 ~40 x4 6.1 

GTX1660Ti 1536 1845 288 ~240 x16 7.5 

GTX1080 2560 1847 320 ~240 x16 6.1 

 

Table 3. Encoding performance of the HTJ2K decoder for the 4K 

4:4:4 12bit video test sequence ARRI AlexaDrums. “1b” is for 1 

bit/pixel and “ls” is for lossless. †for [7], results at an unknown 

bitrate and codeblock size; they are obtained on nVidia Quadro 

P5000, which is equivalent to GTX1080. 
 GT1030 GTX1660Ti GTX1080 

Kernel 1b ls 1b ls 1b ls 

 KCT+DWT time to decompose one frame (ms)  

KCT+DWT 6.233 6.233 1.410 1.410 1.304 1.304 

 Time to encode one frame (ms) using 64x64 codeblocks 

KMagSgn 3.243 4.338 0.698 1.089 0.551 0.647 

KVLC 1.105 1.432 0.307 0.381 0.195 0.224 

KMEL 0.275 0.303 0.092 0.026 0.102 0.026 

KVCPY 0.115 0.096 0.028 0.079 0.022 0.076 

 Frames per second 

 90 80 391 332 455 435 

 Time to encode one frame (ms) using 32x32 codeblocks 

KMagSgn 3.263 4.350 0.794 2.013 0.576 0.815 

KVLC 1.434 1.530 0.377 0.630 0.374 0.463 

KMEL 0.496 0.366 0.107 0.093 0.125 0.100 

KVCPY 0.370 0.568 0.077 0.129 0.064 0.126 

 Frames per second 

 84 76 358 230 405 353 

 Frames per second 

JPEG2K [7] NA NA 40† 
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