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Abstract 

Ship wake detection is of great importance in the characterisation of synthetic aperture radar (SAR) 

images of the ocean surface since wakes usually carry essential information about vessels. Most detection 

methods exploit the linear characteristics of the ship wakes and transform the lines in the spatial domain into 

bright or dark points in a transform domain, such as the Radon or Hough transforms. This paper proposes an 

innovative ship wake detection method based on sparse regularisation to obtain the Radon transform of the 

SAR image, in which the linear features are enhanced. The corresponding cost function utilizes the Cauchy 

prior, and on this basis, the Cauchy proximal operator is proposed. A Bayesian method, the Moreau-Yoshida 

unadjusted Langevin algorithm (MYULA), which is computationally efficient and robust is used to estimate 

the image in the transform domain by minimizing the negative log-posterior distribution. The detection 

accuracy of the Cauchy prior based approach is 86.7%, which is demonstrated by experiments over six 

COSMO-SkyMed images. 
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1. INTRODUCTION 

Ship wakes are significant features frequently found in synthetic aperture radar (SAR) images of the ocean 

surface. Since they provide key information on the vessels that can be used in velocity estimation, tracking, 

classification, and so on, detecting ship wakes turns out to be a timely and important research topic.  

Considering the possibility to model ship wakes as linear features, ship wake detection approaches generally 

exploit line detection methods, such as the Hough and Radon transforms. Thanks to its low computational cost 

compared to the Hough transform, the Radon transform has been initially utilized by Murphy [1] in ship wake 

detection. Rey et al. [2] have combined Wiener filtering with the Radon transform to enhance information in 

the Radon domain and improve peak detectability. Tunaley has used a method to limit the search range in the 

Radon domain in [3] and improved the detection performance. In an application focused on ship velocity 

estimation, Zilman et al. [4] have performed wake detection by enhancing the information in the Radon domain. 

Courmontagne [5] has combined Radon transform with stochastic matched filtering, whilst Kuo and Chen [6] 

have utilized wavelet correlators for wake detection. 

In recent work on wake detection, which processes observed SAR images directly without performing any 

enhancement step, Graziano et al. [7-10] have proposed the idea of using ship-centred-masked images and 

limiting the searching area in the Radon domain within two sine waves. Karakuş et al. [11, 12] have proposed 

a novel technique for ship wake detection in SAR images based on sparse regularization whereby the 

generalized minimax concave (GMC) penalty of Selesnick [13] has first been introduced in a 2-D image 



 

 

enhancement study. In [11], the performance of the GMC based method has been demonstrated with at least 

10% accuracy gain over various datasets compared to common regularisers, such as L1, Lp and TV norms.  

The Cauchy distribution is a member of the α-stable distribution family and known for its ability to model 

heavy-tailed data. As a prior, it is sparsity-enforcing similar to its generalized-Gaussian counterpart, the 

Laplace distribution [14] (i.e. the L1  norm) and it has generally been utilized in despeckling studies by 

modelling subband coefficients of contourlet [15], and wavelet [16, 17] transforms. Apart from its applications 

in denoising studies, it has otherwise very rarely been used in imaging inverse problems, due to the absence of 

a proximal operator for the Cauchy prior, which would make it applicable in basic proximal splitting algorithms 

such as forward backward (FB). 

In this paper, we exploit the flexibility of the method proposed in [11] and improve it by utilizing Cauchy 

distribution as prior instead of the GMC. As the proposed methodology incorporates the Cauchy distribution 

as the regularization term, we further derive the proximal operator for it, which, we believe, will make Cauchy 

regularisation more applicable in various imaging inverse problems. Moreover, the solution to the Cauchy 

regularized inverse problem for wake detection is found through a Bayesian methodology, namely Moreau-

Yoshida unadjusted Langevin algorithm (MYULA), which has high computational efficiency and robustness. 

In the experimental analysis, SAR images of the sea surface acquired by the COSMO-SkyMed satellite are 

used for ship wake detection and performance analysis of the proposed method is performed in comparison to 

the GMC regularisation in [11] and the detection method in Graziano et. al. [7] .  

The rest of the paper is structured as follows: the background is presented in Section 2, including the image 

formation model for ship wakes identification and maximum a-posteriori (MAP) image reconstruction via 

MYULA. In Section 3, MYULA implementation in solving the Cauchy prior based inverse problem and the 

derivation of the Cauchy proximal operator are discussed. The experimental results are shown in Section 4, 

and Section 5 presents a brief conclusion of the paper. 

 

 

2. THEORETICAL PRELIMINARIES 

2.1. Image Formation Model 

Wake structures can generally be divided into four categories: a turbulent wake, Kelvin wake, narrow-V 

wake, and internal wave wakes, which are shown in Fig. 1 [18]. Since internal waves are observed in shallow 

waters and are generally less common in SAR imagery, in this paper, we carry out ship wake detection by 

focusing on the first three categories: (1) turbulent wake which is the central dark streak, (2) two bright arms 

of Narrow-V wake bounding around the central line, and (3) two Kelvin arms that are located at both sides of 

the turbulent wake within a half angle of 19.5°.  

 Ship wakes generally appear as bright and/or dark streaks over the sea surface in SAR images, and thus wake 

detection algorithms involve detecting linear features in noisy background. Mathematically, once we model 

ship wakes as lines, the SAR image formation model can be expressed in terms of its inverse Radon transform 

as 

  𝑌 = 𝐶𝑋 + 𝑁 (1) 

where 𝑌 is the 𝑀 × 𝑀 SAR image, 𝑋(𝑟, 𝜃) is the image in Radon domain, 𝑁 refers to the additive noise 

and 𝐶 = 𝑅−1 represents the inverse Radon transform.  𝑋(𝑟, 𝜃) represents lines as a distance 𝑟 from the 

center of 𝑌 and an orientation 𝜃 from the horizontal axis of 𝑌. Discrete operators 𝑅 and 𝐶 are used as in 

[19].  



 

 

 
Fig. 1. Typical ship wake patterns [18] 

 

2.2. MAP Image Reconstruction 

We consider the ship wake detection inverse problem as reconstructing the Radon image 𝑋  from the 

observed SAR image 𝑌. Following Bayes’ rule, incorporating a prior distribution in conjunction with the 

observed statistical model produces the knowledge on 𝑋 given 𝑌, namely the posterior distribution 𝑝(𝑋|𝑌) 

as: 

 𝑝(𝑋|𝑌) =   
𝑝(𝑌|𝑋)𝑝(𝑋)

∫ 𝑝(𝑌|𝑋)𝑝(𝑋)𝑑𝑋
 (2) 

where the denominator ∫ 𝑝(𝑌|𝑋)𝑝(𝑋)𝑑𝑋 is basically the marginal likelihood 𝑝(𝑌) which is independent 

from 𝑋 and assumed to be constant. Hence, the unnormalised posterior is defined by 

 𝑝(𝑋|𝑌) ∝ 𝑝(𝑌|𝑋)𝑝(𝑋).              (3) 

In the convex case, the posterior distribution is assumed to be log-concave, 𝑝(𝑋|𝑌) ∝ 𝑒𝑥𝑝{−𝐹(𝑋)}, where 

𝐹(𝑋) is denoted as a convex function. In modern statistical image processing many approaches rely heavily 

on the maximum a-posterior (MAP) estimator: 

 𝑋̂𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑋

𝑝(𝑋|𝑌) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑋

𝐹(𝑋) (4) 

which can be computed efficiently in most cases by using proximal optimization algorithms, even in very large 

problems [20]. 

Under the assumption of an independent and identically distributed (iid) standard normal noise case, the 

likelihood distribution 𝑝(𝑌|𝑋) can be expressed as 

 𝑝(𝑌|𝑋) ∝ 𝑒𝑥𝑝{−‖𝑌 − 𝐶𝑋‖2
2}. (5) 

We consider models in which the cost function is expressed as a summation of two functions as  

 𝐹(𝑋) ∝ 𝑓(𝑥) + 𝑔(𝑥)  (6) 

where 𝑓(𝑥) = ‖𝑌 − 𝐶𝑋‖2
2  refers to the standard normal likelihood, and 𝑔(𝑥) = −𝑙𝑜𝑔 (𝑝(𝑋)) , in which 

𝑝(𝑋) refers to the prior knowledge on 𝑋. 

 

2.3. MYULA 

 In this paper, we employ a computationally efficient, theoretically sound, and robust Markov chain Monte 

Carlo (MCMC) algorithm, i.e. MYULA, to solve the optimization problem given in (4). MYULA has been 



 

 

successfully applied to solve imaging inverse problems including image deconvolution and tomographic 

reconstruction in [20], and radio interferometric image reconstruction in [21]. Furthermore in [20, 21], 

MYULA has been used to quantify uncertainty via posterior credible sets and hypothesis testing, which 

demonstrate that MYULA is able to provide reliable approximation with lower computational cost than the 

companion sampling mechanism proximal Metropolis-adjusted Langevin algorithm (Px-MALA) [21]. 

Denote the posterior 𝑝(𝑋|𝑌) as 𝜋. For MYULA, the samples from 𝜋 can be obtained using the Langevin 

diffusion [21], but with the approximation shown in (7) where the Moreau-Yoshida envelope 𝑔𝜔  of the non-

smooth term 𝑔 is included. Then the posterior can be approximated as 

 𝜋𝜔(𝑥) =
𝑒𝑥𝑝{−𝑔𝜔(𝑥)−𝑓(𝑥)}

∫ 𝑒𝑥𝑝{−𝑔𝜔(𝑥)−𝑓(𝑥)}𝑑𝑥
  (7) 

where 𝛻𝑙𝑜𝑔𝜋𝜔  is Lipchitz continuous, hence the Langevin diffusion associated with 𝜋𝜔 is well posed and a 

Markov chain with good convergence properties is obtained.  

Given 𝜔 > 0 and the step size 𝛿 > 0, the corresponding MYULA sampling mechanism can be written as 

[20] 

 𝑋(𝑖+1) = (1 −
𝛿

𝜔
) 𝑋(𝑖) − 𝛿𝛻𝑓(𝑋(𝑖)) +

𝛿

𝜔
𝑝𝑟𝑜𝑥𝑔

𝜔(𝑋(𝑖)) + √2𝛿𝑍(𝑖+1)                 (8) 

where 𝑍(𝑖) is a sequence of iid standard Gaussian random variables with the same dimension as 𝑋(𝑖) [20] 

and 𝑝𝑟𝑜𝑥𝑔
𝜔(∙) is the Moreau proximal operator of the function 𝑔(⋅). 

 

3. THE PROPOSED METHOD 

3.1. Cauchy prior and Cauchy proximal operator 

In this study, we propose the use of the Cauchy distribution to solve imaging inverse problems by defining 

its proximal operator in a closed-form solution. Cauchy distribution is one of the special members of the α-

stable distribution family which is known to be heavy-tailed and promote sparseness in various application 

areas.  

Contrary to the general α-stable family, it has a closed-form probability density function, which is defined 

by [22]  

 𝑝(𝑋) ∝
𝛾

𝛾2+𝑋2  (9) 

where 𝛾 is the dispersion (scale) parameter, which controls the spread of the distribution. 

Consequently, by replacing 𝑝(𝑋) with the Cauchy prior in (9), the minimization with Cauchy regularization 

becomes 

 𝑋̂𝐶𝑎𝑢𝑐ℎ𝑦 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

‖𝑌 − 𝐶𝑋‖2
2 − 𝑙𝑜𝑔 (

𝛾

𝛾2+𝑋2
). (10) 

As mentioned above in (8), MYULA necessitates a proximal operator for the associated prior. The proximal 

operator of any function 𝑔(∙) with 𝜔 > 0 is defined as 

 𝑝𝑟𝑜𝑥𝑔
𝜔(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑢
[𝑔(𝑢) +

‖𝑢−𝑥‖2

2𝜔
]. (11) 

For a Cauchy prior, we recall 𝑔(𝑥) = −𝑙𝑜𝑔 (𝑝(𝑋)), then the Cauchy proximal operator is obtained as  

 𝑝𝑟𝑜𝑥𝑔
𝜔(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑢
[− 𝑙𝑜𝑔 (

𝛾

𝛾2+𝑢2
) +

‖𝑢−𝑥‖2

2𝜔
] (12) 



 

 

The solution to this minimization problem can be obtained by taking the first derivative of the cost function 

in (12) in terms of 𝑢 and setting it to zero. Then, we get  

 𝑢3 − 𝑥𝑢2 + (𝛾 2 + 2𝜔)𝑢 − 𝑥𝛾 2 = 0. (13) 

Wan et al. in [22] proposed a MAP solution to the denoising problem of a Cauchy signal under Gaussian 

noise, and defined this solution as “Cauchy shrinkage”. Similarly, the minimization problem in (12) can be 

solved with the same approach as in [22],  however with different parameterization.  

Hence, following [22], the solution to the cubic function given in (13) can be obtained through Cardano’s 

method and the Cauchy proximal operator can be obtained as  

 𝑝𝑟𝑜𝑥𝑔
𝜔(𝑥) =

𝑥

3
+ 𝑠 + 𝑡                 (14) 

where 𝑠 and 𝑡 are determined by 𝑥 and 𝜔, which are iteratively updated at each iteration together with a 

constant value 𝛾, and are defined as 

 𝑠 = √
𝑞

2
+ 𝑑𝑑

3
 (15) 

 𝑡 = √
𝑝

2
− 𝑑𝑑

3
 (16) 

 𝑑𝑑 = √
𝑝3

27
+

𝑞2

4
 (17) 

 𝑝 = 𝛾2 + 2𝜔 −
𝑥2

3
 (18) 

 𝑞 = 𝑥𝛾 2 +
2𝑥3

27
−

𝑥

3
(𝛾 2 + 2𝜔) (19) 

Although the cost function in (10) is non-convex, the use of a Cauchy prior guarantees that the approximate 

full posterior 𝜋𝜔  defined in (7) remains proper. Consequently, MYULA can still be used in our case [20]. 

3.2. MYULA for Cauchy Regularized Cost Function 

Since we have the proximal operator definition for a Cauchy prior, the minimization problem given in (10) 

can be solved via MYULA which as shown in Algorithm I. The algorithm stops when one of the following 

conditions is satisfied. 

i) When the maximum number of iterations is reached. In this study we set 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 200. 

ii) The error term reaches a small value of 10−3. For each iteration 𝑖, this term is calculated as 

 𝜖(𝑖) =
‖𝑋(𝑖) −𝑋(𝑖−1)‖

‖𝑋(𝑖−1)‖
 (20) 

We observed that in order to obtain a point estimate, small number of iterations, e.g. 150 or 200, are enough. 

However, please note that in a fully Bayesian analysis such as uncertainty quantification, Algorithm I should 

be run longer in order to obtain a proper posterior distribution for each pixel.  

The choice of MYULA parameters, 𝛿 and 𝜔 given in Algorithm I are related to the Lipschitz constant 𝐿. 

According to Theorem 2 in [20], 𝛿 should take values in the interval (0, 𝜔/(𝐿 ∙ 𝜔 + 1)] to ensure the stability 

of the Euler-Maruyama discretization. The value of 𝛿 is closely related to the bias-variance trade-off. 

Specifically, small 𝛿 values can produce low asymptotic bias, but create a Markov chain that converges slowly 



 

 

and requires large number of iterations to produce stable estimates. Conversely, a large value of 𝜔 speeds up 

convergence at the expense of asymptotic bias. Thence, we use 𝜔 = 1/4𝐿 and 𝛿 ∈ [1/25𝐿, 1/10𝐿] in our 

experiments. 

 

Algorithm I MYULA for Cauchy regularized cost function 

Input: SAR image 𝑌, 𝛾 ∈ [0.0001,0.1] 
Output: Radon image 𝑋  

Set: 𝛿 = 1 25𝐿⁄ , 𝜔 = 1 4𝐿⁄  

do  

𝑍(𝑖+1)~𝑁(0, 𝕀𝑑)   

𝑋(𝑖+1) = (1 −
𝛿

𝜔
) 𝑋(𝑖) − 𝛿𝛻𝑓(𝑋(𝑖)) +

𝛿

𝜔
𝑝𝑟𝑜𝑥𝑔

𝜔(𝑋(𝑖)) + √2𝛿𝑍(𝑖+1) 

while 𝜖(𝑖) > 10−3 or 𝑖 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

 

3.3. Wake Detection  

Upon obtaining the solution to the inverse problem, the reconstructed Radon image is used to detect ship 

wakes for the corresponding ship-centred-masked SAR image. The method used in this paper is the one proposed 

in [11]. In particular, we first limit the searching area between two sine waves as in [7, 11]. Then the turbulent 

and one narrow-V wake pair satisfying the angular condition, i.e. that they are no more than 4° apart, is detected. 

Kelvin wake's detection is similar to the above process, except that the angular distance is 19.5°.  

Thereby, confirmation of the candidate half-lines is achieved by using as measure an index, 𝐹𝐼 . This is 

interpreted as a measure of the ratio between the mean value over the un-confirmed wake, 𝐼𝑤̅, and the mean 

intensity of the image, 𝐼 ̅ [11]:  

 𝐹𝐼 =  𝐼𝑤̅ 𝐼 ̅⁄ − 1     (21) 

Assuming a margin of 10%, after a trial-error procedure an index 𝐹𝐼 > 0.1 is obtained for both the narrow-

V wake and Kelvin wake. Therefore, half-lines satisfying 𝐹𝐼 ≥ 0  for turbulent wakes, and 𝐹𝐼 ≤ 0.1  for 

narrow-V and Kelvin wakes are confirmed, whereas those not following these rules are discarded. For further 

details on the part of the method please see [7, 11]. 

 

Table 1. Visible wakes in used image dataset 
(1 means visible and 0 represents invisible) 

Image Turbulent 1st Narrow 2nd Narrow 1st Kelvin 2nd Kelvin 

CSM_1 1 1 0 0 0 

CSM_2 1 1 0 0 0 

CSM_3 1 1 0 1 0 

CSM_4 1 1 0 1 0 

CSM_5 1 1 0 0 0 

CSM_6 1 1 0 0 0 

 

 



 

 

 

Table 2. Detection results over 6 COSMO-SkyMed images 

(𝜔 = 1/4𝐿, 𝛿 = 1/25𝐿) 

 TP  TN FP FN %Accuracy 

Cauchy 40.0%  46.7% 6.7% 6.7% 86.7% 

GMC [11] 36.7%  40% 20% 3.3% 76.7% 

Graziano [7] 33.3%  36.7% 16.7% 13.3% 70.0% 

 

4. EXPERIMENTAL RESULTS 

In order to test the detection performance of the proposed method, we used 6 COSMO-SkyMed images. Table 

1 presents the ship wake information identified by visual inspection for all 6 images, where 1 means visible 

and 0 represents invisible wakes. In Table 1, there are 14 detectable wakes (6 turbulent, 6 Narrow-V and 2 

Kelvin) out of 30 wakes. The performance evaluation is based on the percentage of correctly detected/discarded 

ship wakes.   

In the experimental analysis, we compared the wake detection performance of the proposed method to the 

two state-of-the-art methods, which are proposed in [11] for GMC regularisation, and by Graziano et. al. in [7], 

respectively for all 6 SAR images utilised in this paper. As described in Section 3, in the proposed method, the 

value of 𝜔 is fixed to 1/4𝐿, and a value of 𝛿 in the range of [1/25𝐿, 1/10𝐿] is tested, from which the 

value with the best performance is selected. Evaluating the detection accuracy consists of two components, i.e. 

the percentage of correctly confirmed (true positive (TP)) visible wakes as well as the percentage of correctly 

discarded (true negative (TN)) for invisible wakes.  

Table 2 presents the detection performance over 6 COSMO images for all methods. By examining TP and 

TN values in Table 2, we can see that the detection results in the Cauchy case are 40.0% and 46.7% for TP and 

TN, respectively, whilst the GMC has 36.7% and 40.0%. Compared to the regularisation based methods the 

method of Graziano et. al. [7] performs poorer since it does not perform any image enhancement methodology. 

This fact obviously states that the regularisation-based wake detection methodology proposed in [11] is crucial 

for wake detection by having 16.7% accuracy gain over all images in this paper. The choice of Cauchy prior is 

also another important factor, which is shown in this paper. The overall accuracy for all 6 images is 10% higher 

than the GMC based prior proposed in [11]. 

 

    

(a)                   (b)                      (c)                     (d) 

Fig. 2. Ship wake detection results for CSM_4. (a) Masked ship-centred image. Detected lines (b), (c) and (d) for the 

proposed method, [11] and [7], respectively. Yellow, green and red lines refer to the turbulent, narrow-V and Kelvin 

wakes, respectively. 



 

 

Furthermore, visual evaluation for all methods can be performed by observing Fig. 2. From the spatial 

domain, it can be seen that all the methods detect three visible wakes. However, the Cauchy based approach is 

able to locate the turbulent wake closer to the true location compared with the GMC detection as well as the 

method of Graziano et. al, which demonstrates the higher accuracy of the proposed method. 

5. CONCLUSIONS 

In this paper, we proposed a new method for detecting ship wakes in SAR images of the sea surface based 

on solving an inverse problem. The Cauchy prior was used in the definition of the cost function, and the 

corresponding solution was found by using an efficient and robust Bayesian method, i.e. MYULA. A Cauchy 

proximal operator was introduced for the first time, in conjunction with proximal splitting (or proximal MCMC) 

algorithms and applied to the ship wake detection in SAR images. In the experiments, 6 COSMO-SkyMed 

satellite images were used to test the performance of the proposed method. The superiority of the proposed 

method was demonstrated through the comparison with the GMC prior based method [11] as well as the method 

of Graziano et. al. [7] with at least 10% accuracy gain over the dataset. 
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