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ABSTRACT

Deep learning approaches in image processing predominantly
resort to supervised learning. A majority of methods for im-
age denoising are no exception to this rule and hence de-
mand pairs of noisy and corresponding clean images. Only
recently has there been the emergence of methods such as
Noise2Void, where a deep neural network learns to denoise
solely from noisy images. However, when clean images that
do not directly correspond to any of the noisy images are
actually available, there is room for improvement as these
clean images contain useful information that fully unsuper-
vised methods do not exploit. In this paper, we propose a
method for image denoising in this setting. First, we use a
flow-based generative model to learn a prior from clean im-
ages. We then use it to train a denoising network without the
need for any clean targets. We demonstrate the efficacy of our
method through extensive experiments and comparisons.

Index Terms— image denoising, flow-based models, un-
supervised methods

1. INTRODUCTION

Noise corrupts virtually any image captured through a cam-
era. The degradation due to noise is typically captured in the
equation: Y = X + N where X is a clean image, N is noise
and Y is the corresponding noisy version of X. Image de-
noising methods attempt to recover the clean image from its
noisy version.

Traditional methods such as BM3D [1], NSCR [2], WNNM
[3] rely on the self-similarity of image patches to denoise
solely from noisy images. Methods such as [4, 5, 6] that use
deep learning have been proposed for image denoising. Al-
though they achieve state-of-the-art performance along with
excellent test times, they are all discriminative models. As
a result, they require pairs of noisy images and their corre-
sponding clean images.

Recently, deep learning methods like Noise2Noise [7] and
Noise2Void [8] have been proposed that use statistical prop-
erties of noisy image patches to eliminate noise. While these
methods do not need any clean images, in situations where
they are available, they cannot utilize the valuable informa-
tion available in the clean images.
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Fig. 1: Sample result from our method. Observe that the
fine details in the tree are restored without any noticeable blur
even when the noise level in the input is high (o = 35). Image
taken from BSD68 [9]

Another important class of methods are prior based. Priors
are crucial for obtaining a reasonable answer out of all the
possible solutions for an ill-posed problem such as image de-
noising. With handcrafted priors, these methods can be used
when clean images are not available. However, these priors
have been criticized as they are often chosen for their compu-
tational or analytical convenience rather than accuracy. Deep
learning has allowed for constructing more accurate priors.
Deep image prior [10] claims that the architecture of a con-
volutional neural network alone can act as a prior for natural
images. Though the results are good, it is surprising as there
is no mathematical justification for why this prior works. Go-
ing further, Chen et al [11] have used a GAN [12] to explicitly
construct a prior for realistic noise which they use for denois-
ing.

In this paper, we propose an approach for denoising using an-
other class of generative models, called flow-based generative
models [13, 14]. These models learn an invertible transfor-
mation from a complex distribution like images to a simple
one like the Gaussian distribution. They have been success-
fully used to generate realistic images. An example of this
is the work by Kingma et al., in [15] where they use flow-
based models to generate photorealistic face images using the
CelebA HQ dataset [16]. Unlike GANSs, Flow-based models
can explicitly and accurately capture the likelihood function
of clean images. As a consequence, they are excellent candi-
dates for learning a realistic prior which is essential for supe-
rior denoising performance. Also, they do not suffer from the
unstable training dynamics that GANSs are notorious for.
Figure 1 shows a sample result from our method. We train a



flow-model on clean images alone while a different network
is trained to denoise using only the likelihood specified by the
flow-based model. As a result, our method can be used even
when there is no pairing between noisy and clean images.
The main contributions of our work are as follows:

1. To the best of our knowledge, this is the first approach
to use a flow-based model as a prior for image denois-
ing.

2. Through extensive experimentation we show that our
method has comparable quantitative, as well as, quali-
tative performance.

2. FLOW-BASED GENERATIVE MODELS

Flow-based generative models [13, 14] learn the bijective
transformation from a high-dimensional, complicated ran-
dom variable X to a latent random variable Z. Typically, X
represents images in a dataset while Z is assumed to be a
standard normal random vector.

Z ~N(0,1) (1
X = n(Z) @

To learn the transformation h, the following unbiased esti-
mate of the negative log-likelihood of X is minimized:

LN
~ Z —log P(;) 3
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Here, x; are samples from the dataset. Using the standard
rules of random variable transformation, log P(X) can be
written as

log P(X) = log P(Z) — log ’j‘: 4)

where | % ’ is the determinant of the Jacobian of A. This term

can be further decomposed when h is a composition of several
other functions as is typical in a deep neural network.
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log P(X) =log P(Z) — Zlog’ (6)
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To make the computation of the right hand side of (6)
tractable, flow-based models restrict the class of transfor-
mations to those for which the Jacobian is a triangular (or
even a diagonal) matrix. A simple example is the following
additive coupling layer [13]:

Ypy = Tp, (N
Yp = Tp, + m(mpl) (8)

where z, y are the inputs and outputs of the layer respectively;
p1, P2 is a partition of the features along the channel dimen-
sion and m is an arbitrary transformation. For this layer, it is
easy to see that the Jacobian is
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where I, , I, are identity matrices that are of the same size
as the partitions pp, p2. Conveniently, the determinant of the
matrix in (9) is simply 1 and hence it is ideal for use in a
flow-based model. Unlike in [13, 14, 15], we do not require
invertible transformations as there is no need for sampling
when we are only learning a prior. Nevertheless, in our work
we use the layers and formulation of flow-based models pro-
posed in [15].

3. PROPOSED METHOD

i
| Stage 2

Fig. 2: An illustration of our method. In the first stage, we
train a flow-based model to learn a prior distribution on clean
images. Next, we use this prior along with weak supervision
(see subsection 3.2) to train a denoising network.

In this section we describe our two-stage approach (illus-
trated in Figure 2) to using the log-likelihood in (6) as a prior
for image denoising.

3.1. Stage 1: Training the Flow model

First, we train a flow-based model based on clean images to
learn a transformation from clean images to the standard mul-
tivariate Gaussian random variable. Due to structure of the
flow-based model as described in (2) and the tractable proba-
bility density of a Gaussian random variable, we can evaluate
(6) for any given image and obtain the likelihood that the im-
age is clean.

Concretely, we train a flow-based model h to minimize the



following objective:
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where C is a constant that normalizes the Gaussian distribu-
tion. It has no bearing on the training and hence can be elimi-
nated. Note that once the training in Stage 1 is complete, h is
fixed during Stage 2.

3.2. Stage 2: Training the Denoiser

Given a noisy image Y, the posterior distribution for the cor-
responding clean image X is

PY | X)P(X)

PIX|Y) = =

(12)
To obtain the maximum a posteriori (MAP) estimate of the
clean image, the denominator can be ignored and the numer-
ator or equivalently its log value is maximized.

argmaxlog P(X |Y) = argmaxlog P(Y | X)+log P(X)
X X

13)
Assuming additive white Gaussian noise, log P(Y'|X) is sim-
ply the negative of the squared error between Y and X . Using
the flow model h trained in Stage 1, we can also compute the
prior log-likelihood of X .
Based on (13), we can formulate a loss function (note the
change of signs as by convention, we want to minimize this
loss) for the denoiser d as follows:

(Y — X)* — Mog P(X) (14)

where A is a hyperparameter that controls the relative impor-
tance of the conditional and the prior probability distributions.
To be mathematically precise, A depends on the noise level in
the image. From our experiments, we also find that the per-
formance of the denoiser is very sensitive to the choice of \.
This poses a challenge as we want to train a single denoiser
for a range of noise levels.
To reduce the dependency of A on the noise level, we mod-
ify the first term in (14) to instead measure the squared error
between blurred versions of X and Y. Intuitively speaking,
we are training d to copy only the low frequency information
from the input Y while adding details that make the output X
to look more clean. The flow model % dictates what details
are addedto Y.
The final form of the loss function we use for the denoiser d
is

(B(Y) — B(X))? — Alog P(X) (15)
Here B is a local mean filter, the size of which is chosen to be
3 x 3, as that gave the best performance on the validation set.

4. EXPERIMENTS

4.1. Training Details

We use the validation set of MS COCO [17] for our training.
Of the 41K images it contains, we use a subset of 20K images
as our clean image dataset. We add Gaussian noise to another
subset of 20K images to form our noisy image dataset. As we
want our method to be agnostic to noise level, for each image,
the standard deviation of the added noise is chosen uniformly
in the interval [0, 50]. We set aside the remaining 1K images
for validation to tune the hyperparameters A and the size of
the local mean filter.

4.1.1. Stage 1

We use the architecture described in [15] for the flow-based
model. We feed patches of size 32 from images in the clean
dataset as input to this model. Using the loss in (11), we train
for 100 epochs using the Adam optimizer [18] with learning
rate = 1 x 1072, 81 = 0.9, B2 = 0.999.

4.1.2. Stage 2

We use the ResNet [19] for our denoiser. Because the flow-
based model only accepts fixed size inputs and the ResNet
does not change input size, we use input patches of size 32.
In this stage, however, they are extracted from noisy images.
Using (15), we train only the denoiser, for 100 epochs using
the Adam optimizer with the same parameter settings as in
stage 1. We experimented with various choices of A and the
size of the local mean filter. Based on our results, we choose
A = 1.5 x 1075 and local mean filter of size 3 x 3 as they
give the best PSNR values.

4.2. Results

Following [1, 8], we evaluate our method on the BSD68
dataset [9] for different noise levels and compare it with
BM3D [1], Noise2Void [8], Deep image prior [10]. All com-
parisons are made using either results reported in the respec-
tive papers or those obtained from running the code that the
authors have generously shared. Table 1 shows the average
PSNR values of different methods for images from BSD6S.
Although PSNR is not an accurate metric for perceptual qual-
ity, our method performs competitively with Noise2Void and
is better than Deep image prior.

Figure 3 shows qualitative comparison of our results with
other methods. Our method is able to remove noise effectively
without blurring any textures, details or sharp edges (this is
obvious in the sky in the first set of images). Deep image prior
produces outputs that still have visible noise. Noise2 Void, al-
though better than Deep image prior, fails in some cases. An
example of this is the blades of grass in the third set of images
where the output from Noise2Void is noticeably desaturated.



Ground truth

Noise2 Void

Fig. 3: Qualitative results. Here, we show the ground truth, the noisy input (Gaussian noise, o = 25) and the denoised outputs
from BM3D [1], Noise2Void [8], Deep image prior [10] and finally, our method. None of these methods need supervision.

| Method | BM3D | DnCNN | N2V | DIP | Ours |

oc=15 | 33.14 31.73 | 28.92 | 27.58 | 29.10
o=25| 3022 29.23 | 27.68 | 26.6 | 28.61
o=35| 2825 28.95 | 26.51 | 2597 | 26.2

Table 1: Quantitative results. We show PSNR (dB) of var-
ious denoising methods, namely, BM3D [1], DnCNN [5],
Noise2Void [8], Deep image prior [10] and our method. Of
these, only DnCNN is fully supervised.

5. CONCLUSIONS

We have proposed the use of flow-based model as a mathe-
matically justifiable and realistic prior for image denoising.
We have conducted qualitative and quantitative experiments
on the BSD68 [9] dataset that reveals the competitive perfor-
mance of our method.

Motivated by our success, we conjecture that using a flow-
based model prior should be effective for solving other im-
age restoration tasks such as image deblurring and super-

resolution in an unsupervised fashion.
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