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Abstract

This paper proposes a novel deep learning architecture for semantic segmentation. The proposed Global and
Selective Attention Network (GSANet) features Atrous Spatial Pyramid Pooling (ASPP) with a novel sparsemax
global attention and a novel selective attention that deploys a condensation and diffusion mechanism to aggregate the
multi-scale contextual information from the extracted deep features. A selective attention decoder is also proposed to
process the GSA-ASPP outputs for optimizing the softmax volume. We are the first to benchmark the performance
of semantic segmentation networks with the low-complexity feature extraction network (FXN) MobileNetEdge,
that is optimized for low latency on edge devices. We show that GSANet can result in more accurate segmentation
with MobileNetEdge, as well as with strong FXNs, such as Xception. GSANet improves the state-of-art semantic
segmentation accuracy on both the ADE20k and the Cityscapes datasets.

I. INTRODUCTION

Semantic segmentation is an important computer vision task that has many industrial applications,
like autonomous driving, medical image analysis and mobile phone cameras. There has been significant
progress by recent research works that proposed deep neural networks for semantic segmentation. The
accuracy of pixel-level semantic segmentation improves with the knowledge of multiscale contextual
information. PSPNet [1] performs spatial pyramid pooling (SPP) at several grid scales. Atrous spatial
pyramid pooling (ASPP) has been inspired by SPP and utilized in DeepLabV3+ [2]. ASPP collects
information from the extracted features at different scales and receptive fields using dilated convolutions
with different dilation rates. Another approach, called self-attention [3] gathered momentum, as it has
been shown it can capture the important information without being constrained to a local regular grid.
Self-attention [4], [5] and its low cost variants [6], [7] have been adopted for semantic segmentation.

We address in this paper two important issues that are crucial to more accurate semantic segmentation,
and that have previously received little or no attention. The first issue is how to fuse the captured multiscale
contextual information. DeepLabV3+ [2] combines the contextual information using a simple 1 × 1
convolutional filter that cannot model the relative importance of the different scales at the location of
interest. The second issue is how to obtain relevant global contextual information. For example, the ASPP
deployed in DeepLabV3 deploys global average pooling (GAP) to capture the mean feature as the global
contextual information of the input feature, which will be the same at all spatial locations.

This paper proposes a novel architecture called the Global and Selective Attention Network (GSANet)
to address these issues. GSANet constitutes of a novel Selective Attention (SA) module for the fusion of
the contextual information from the multiple scales, while giving the appropriate relative importance
to the different scales at the different spatial locations. The proposed SA-ASPP module aggregates
multiscale contextual information from the Feature eXtraction Network (FXN) using atrous convolutions
with different dilation rates. The proposed selective attention combines these features by calculating the
relative importance of the multiscale features using a condensation and diffusion mechanism. GSANet
also features a Global Attention Feature (GAF) module (instead of global average pooling) to provide a
more relevant global feature with different global contextual information at the different spatial locations,
and reflect the different perceptions of the global information when observed from different locations.
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Fig. 1: The system architecture of the proposed GSANet.

Another contribution is Sparsemax-GAF that deploys sparsemax normalization (instead of the popular
softmax normalization) when calculating the GAF so as to suppress the noisy long range contextual
information and boost the more prominent global information. The proposed GSA-ASPP calculates the
sparsemax-GAF as the global features, and combines this global feature with the multiscale features
extracted at different dilation rates using the SA. Please note that the selective attention module and the
GAF module are not limited to the context of ASPP. They can serve to enhance any network modules that
requires calculation of global contextual information and the fusion of multiscale information. Moreover,
we propose the selective attention decoder (SA-Dec), that uses selective attention to combine the GSA-
ASPP output together with some low-level features extracted by the FXN for better decoding.

Other contributions of this paper is the investigations of segmentation networks for best performance, as
well as for efficiency. With the Xception network as the FXN, we show that the GSANet provides the state-
of-the-art (SOTA) accuracy on public datasets ADE20k and Cityscapes. We are also first to benchmark
the performance of the light network MobileNetEdgeTPU [8] (MNEdge), that has been optimized for fast
performance on the edge devices, in the semantic segmentation task. We show that with both the MNEdge
FXN and the Xception FXN, GSANet provides more accurate semantic segmentation predictions than the
popular DeepLabV3+ framework.

The rest of this paper is organized as follows. Section II describes our proposed GSANet and its novel
components: the SA module in Section II-A, the sparsemax-GAF module in Section II-B, and the SA-Dec
in Section II-C. Our experimental setup, implementation details, results, and ablation studies are presented
in Section III. Conclusions and discussions are made in Section IV.

II. GLOBAL AND SELECTIVE ATTENTION NETWORK

The proposed GASNet architecture is demonstrated in Fig. 1. First, deep features are extracted using the
FXN. Any deep neural network which showed good accuracy on the classification task, can be used as the
FXN. In this paper, we show results when the FXN is either the Xception or the MNEdge network. The
extracted deep features are processed by the GSA-ASPP module, shown in Fig. 2, which is composed of
two sub-modules, namely the SA-ASPP and the sparsemax-GAF module, illustrated in Fig. 2 and Fig. 3,
respectively.

A. Selective Attention ASPP (SA-ASPP)
The ASPP has multiple atrous filters with different dilation rates, as well as global filter, to aggregate

dense information from the FXN features at different scales and receptive fields. This is crucial for pixel-
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Fig. 2: The architecture of GSA-ASPP. It contains two modules, namely the SA-ASPP and sparsemax-
GAF. FXN is the Feature eXtraction Network, such as MobileNetEdgeTPU etc.

level semantic segmentation, where it is need to understand the local and global context surrounding the
pixel of interest, in order to classify it. The SA-ASPP is proposed to also use the context information,
to give different spatial weights to these aggregated multiscale features, before combining them. First, in
the condensation stage, all the W ×H ×C dense features obtained from the atrous and global filters are
concatenated along the feature dimension to form a W×H×nC feature (for the case of n−1 atrous filters
and 1 global filter) , and then condensed from all scales across the spatial and channel dimensions with
global average pooling (GAP) followed by two fully connected layers with a ReLu nonlinearity to form the
1×1×γ condensate feature. In the diffusion stage, n channel attentions are obtained from the condensate
feature using n separate fully connected layers, to diffuse the attention back to each branch. Due to the
condensation and diffusion mechanism, it is easy to see that the channel attention for each branch does
not only use the global contextual information from its own branch, but also borrows information from
multiple branches. In Section III-C, we have show that both the condensation and diffusion stages are
necessary to obtain better performance. For combining the different multiscale features, the element-wise
dot product is applied per channel with the attention values and all the weighted branches are concatenated
again to produce the new concatenated feature for further processing.

B. Global Attention Feature (GAF)

The perception and understanding of the global context is crucial for accurate dense prediction. The
ASPP [2] utilizes global average pooling (GAP) to extract the global contextual information that will be
uniformly used at different spatial locations. One drawback of GAP is that it treats all pixels similarly.
However, pixels at different spatial locations and belonging to different categories should perceive different
global contextual information. Our proposed GAF is a global feature and addresses this issue by using self-
attention. The global context for each pixel is derived from a linear combination of the features at all the
other pixels using a distance metric determined by the degree of similarity between the pixels. If this feature
is normalized by the ubiquitous softmax, we will refer to this as softmax-GAF. To give more weights to
important information and discard the noisy information, we utilize the sparsemax projection [9] instead of
softmax normalization to form the sparsemax-GAF. Sparsemax projection performs Euclidean projection
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Fig. 3: The architecture of the network proposed to generate the Sparsemax Global Attention Feature
(sparsemax-GAF).

of the input attention vector z = [z1, ..., zK ] onto a probability simplex, as described mathematically below,
with the notation that z(1) ≥ z(2), ...,≥ z(K) after sorting z and

sparsemax(zi) = max(0, zi − τ(z)), (1)

where the threshold τ(z) is found by τ(z) = (
∑

j≤f(z) z(j))−1
f(z) ,

f(z) = max
k∈{1,2,..,K}

(
1 + kz(k) >

∑
j≤k

z(j)

)
.

Due to the projection and thresholding, Sparsemax produces sparse probabilities that lead to a selective and
more compact attention focus. The sparsemax-GAF strengthens the similarities and amplifies the attentions
for similar pixels, while forcing zero attentions on dissimilar pixels and discarding noisy features.

The overall pipeline of the proposed GAF module is demonstrated in Fig. 3. First, the pairwise
correlations are calculated for each pixel pair in the input feature map. Then, the raw attention map is
calculated, where each value in the map corresponds to the correlation between two pixels. For sparsemax-
GAF, the sparsemax projection is applied on each row of the map to obtain the normalized attention
map. Third, the normalized attention map is projected onto the original input feature map using matrix
multiplication to obtain the attended feature. The GAF is calculated as the sum of the shortcut input
feature and the attended feature.

C. Selective Attention Decoder (SA-Dec)

The proposed SA-Dec builds on top of the DeepLabV3+ decoder. The SA module is inserted to
selectively combine, with attention, the different features that are input to the decoder. As shown in
Fig. 4, the SA-Dec calculates the selective attention for two features, the low-level feature from the FXN
and the multiscale aggregated feature that is output from the GSA-ASPP. The SA module follows the
same condensation and diffusion method describes in Sec. II-A to modify the two features, before being
processed by the DeepLabV3+ decoder operations constituting concatenation, filtering with convolutional
layers, and upsampling.
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Fig. 4: The network architecture of the proposed Selective Attention Decoder (SA-Dec).

III. EXPERIMENTS

In this section, extensive experiments are conducted to shown the effectiveness of the proposed GSANet
semantic segmentation architecture with different feature extraction networks.

A. Datasets

We benchmarked the performance of GSANet on two widely used public datasets, namely the Cityscapes
and the ADE20k dataset.

Cityscapes [10] is specifically created for scene parsing. There are 5k high quality finely annotated
images and 20k coarsely annotated images, which are taken on the street road with vehicles. The size of
all the images in the dataset is 2048× 1024. The finely annotated images are divided into 2975, 500, and
1525 splits for training, validation, and testing, respectively. The dataset contains 30 classes annotations
in total, while only 19 classes are used for evaluation.

ADE20K [11] dataset is a large-scale dataset used in ImageNet Scene Parsing Challenge 2016. For
the challenging version, there are 150 classes and the dataset is divided into 20k, 2k, and 3k images
for training, validation, and testing, respectively. Most of the images in the dataset are taken from real
life scenes and full of diversity, including objects and scenes of various scales, shapes, and colors etc..
Different from Cityscapes, both scenes and stuff are annotated in this dataset, posing more challenges to
participated methods.

B. Implementation Details

We demonstrate the effectiveness of the GSANet semantic segmentation architecture with a low-
complexity FXN, the MobileNetEdgeTPU (MNEdge), and show it can achieve competitive performance.
We also demonstrate that GSANet beats current SOTA performance with the stronger Xception FXN.

The FXNs namely MNEdge and Xception, are pretrained on the ImageNet [12]. We use Stochastic
Gradient Descent (SGD) to optimize our network, in which we set the initial learning rate to 0.01 for
Cityscapes and 0.007 for ADE20K. During training, the learning rate is decayed according to the “poly”
leaning rate policy, where the learning rate is multiplied by 1 − ( iter

max iter
)power with power = 0.9. For

Cityscapes, we randomly crop out half-resolution patches 512 × 1024 from the original images as the
inputs. While for ADE20K, we set the crop size to 480× 640. For all datasets, we apply random scaling
in the range of [0.5, 2.0], random horizontal flip as additional data augmentation methods. For the ablation
studies below, half resolution image of the Cityscapes dataset, namely 512×1024 are taken as the input for
models using the MNEdge FXN, and the FLOPs are calculated correspondingly. At the inference stage,
we use single scale inference for models using the MNEdge FXN. For Xception based model, we adopted
the left-right flipping and multiscale [0.75, 1.0, 1.25, 1.5, 1.75, 2.0] strategies for inference, following the
methodology adopted by the state-of-the-art methods (cf. DeepLabV3+) for fair comparisons.
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Method mIoU (%) # Params (M) FLOPs (B)
MNEdge +
ASPP

70.45 3.15 26.77

MNEdge +
SA-ASPP
(condensation
only)

71.08 3.20 26.74

MNEdge +
SA-ASPP
(diffusion
only)

71.10 3.18 26.76

MNEdge +
SA-ASPP

71.21 3.20 26.77

MNEdge
+ softmax-
GAF-ASPP

70.48 3.20 27.14

MNEdge +
sparsemax-
GAF-ASPP

71.19 3.20 27.18

MNEdge +
GSA-ASPP

72.10 3.20 27.18

MNEdge +
GSANet

75.07 3.43 37.64

TABLE I: Ablation study of GSANet on Cityscapes validation dataset using MobileNetEdgeTPU
(MNEdge). The inference input resolution is half the resolution of the Cityscapes dataset, namely
512× 1024.

Method mIoU (%)
EncNet [13] 44.65
CCNet [6] 45.22
APNB [7] 45.24
OCNet [5] 45.45
Xception65-DeepLab V3+ [2] 45.65
Xception65-GSANet (ours) 47.20

TABLE II: Comparison to state-of-the-art on the validation set of ADE20K.

C. Abalation Studies and Comparisons with SOTA Methods

Table I shows the effectiveness of GSANet with a low-complexity FXN, MNEdge. The output stride,
namely the ratio of the input image size over the size of the FXN output feature, in these experiments is
16. SA-ASPP (condensation only) means we don’t use the diffusion part using multiple FC layers, but use
a single FC layer instead to obtain channel attentions. SA-ASPP (diffusion only) means no concatenation
and global average pooling are used, and each branch has its own channel attention. Compared to the
DeepLabV3+ ASPP, the results show SA-ASPP provides 1.5% point gain in the mean intersection over
union (mIoU) accuracy. Table I also shows that sparsemax-GAF with the GSA-ASPP has 0.7% point

Method mIoU (%)
CCNet [6] 81.3
DANet [4] 81.50
ACFNet [14] 81.46
Xception65-DeepLabV3+ [2] 80.42
Xception65-GSANet (ours) 82.04

TABLE III: Comparison to state-of-the-art on the validation set of Cityscapes.
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improvement in mIoU over the GAP in SA-ASPP. We can also observe that the sparsemax-GAF gives
better mIoU (0.7% point gain) than softmax-GAF.

Table II and Table III benchmarks GSANet with the strong FXN, Xception-65, on ADE20k and
Cityscapes, respectively. Xception65-GSANet provides around 1.6% gain over Xception65-DeepLab V3+
on both the ADE20k and the Cityscapes datasets.

IV. CONCLUSIONS AND DISCUSSIONS

This paper proposes a novel semantic segmentation architecture, the Global and Selective Attention
Network (GSANet). It enhances all components of the SOTA DeepLabV3+ architecture using attention
modules. The multiscale aggregation in the ASPP takes into account the importance of the contextual
information using the proposed selective attention which deploys condensation and diffusion modules.
More relevant global information is extracted using the proposed sparsemax global attention feature. The
decoder also deploys attention with condensation and diffusion to dope its different input features with
extrinsic information from the other features. With both the low-complexity MobileNetEdge FXN and the
strong Xception FXN, we show that GSANet gives better performance than DeepLabV3+ and achieves
the state of art accuracy.
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