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ABSTRACT

This paper proposes new descriptors based on three-dimensional
Gaussian Markov random fields (3D-GMRF) for volumet-
ric texture classification. The estimated parameters of 3D-
GMRF are decomposed into sign and magnitude components
and then are encoded into a single binary code to describe
the local texture. Our experiments on a synthetic dataset of
volumetric texture show that this approach leads to significant
reduction in descriptor size, while preserving the discrimina-
tive power of 3D-GMRF features. The descriptors proposed
here demonstrate strong performance in distinguishing be-
tween healthy and chronic obstructive pulmonary disease
(COPD) subjects, using a medical dataset. These descrip-
tors are successfully employed to measure the differences
between various groups from the medical dataset, in order to
determine which group is at risk of COPD.

Index Terms— Volumetric texture classification, 3D tex-
ture, 3D-GMRF, COPD

1. INTRODUCTION

Texture is a fundamental property of many objects in our nat-
ural world, giving objects their unique appearance. This has
led to the emergence of texture analysis as a vital topic in
computer-vision and image-processing fields, playing a key
role in many applications including medical image analysis
[1]. Volumetric texture (or solid 3D texture) is the texture
that can be found in 3D images and is indexed by (x, y, z)
∈ R3. This type of texture has become increasingly available
in the medical imaging domain, leveraging the rich informa-
tion of organs’ internal structure provided by different modal-
ities such as magnetic resonance imaging (MRI) and high-
resolution computed tomography (HRCT). The common ap-
proach to handling volumetric texture is extracting textures
from 2D slices of volumetric images. However, such an ap-
proach prevents sufficient exploitation of the valuable infor-
mation provided by the third dimension in volumetric data.

The availability of volumetric images in medical imaging
fields has led to the development of 3D methods to analyze
this data for medical application [1]. In [2], a set of 3D filters
is developed to extract texture features from 3D images for
human ovarian tissue classification. The 3D texture-based
method outperformed the 2D approach using the same tissue.
This finding has also been concluded in [3], in which three-
dimensional Gaussian Markov random fields (3D-GMRF)
were proposed to extract texture features from volumetric
images of lungs and then were used for chronic obstructive
pulmonary disease (COPD) detection. Such a 3D method
demonstrates better results than using features extracted from
2D slices. The method presented in [4] extracts 3D features
using 3D Riesz wavelets for usual interstitial pneumonia
(UIP) classification. The extension of the well-known local
binary pattern (LBP) [5] to 3D was introduced in [6] for
achieving rotation invariance and was applied to discrimi-
nate between MRI of oxygenated and non-oxygenated brain
tissues of newborn babies. The 3D grey-level cooccurrence
matrix (3D-GLCM) was proposed in [7] to extract 3D texture
features for volumetric texture classification.

Recently, deep-learning approaches like convolutional
neural networks (CNN) have made remarkable contributions
to image analysis, including image classification. Although
CNN have become the choice for various computer-vison
applications, including medical image analysis, CNN suffer
from complications that limit their application in the medical
imaging domain. In addition to their extensive memory and
computation power, CNN require large annotated datasets for
training and such datasets are difficult to obtain in the med-
ical imaging domain, due the time and high costs required
to annotate the datasets by experts [8, 9]. This is further
challenged by patient privacy concerns that restrict obtaining
large medical datasets [10]. The limitation of using large
datasets is partially overcome by employing transfer learn-
ing [11], although this is not always an optimal choice as it is
influenced by different medical applications [8]. Therefore,
approaches based on hand-crafted features could be a better



choice for medical imaging analysis applications in which
small amounts of training data are available.
In this paper, we propose an improved 3D-GMRF based
on binary features for volumetric texture classification. We
introduce new descriptors by encoding the 3D-GMRF es-
timated parameters αv into a binary code and employing
them for COPD detection, which, to our knowledge, has not
been reported in literature. Furthermore, the descriptors are
successfully exploited to measure the change of texture in
HRCT images of healthy non-smokers and healthy smok-
ers groups to determine which group tends to be at risk of
COPD. The remainder of the paper is organized as follows:
Section 2 introduces our proposed method. The evaluation
of the proposed method is presented in Section 3. Section
4 presents the medical application of the proposed method,
while Section 5 concludes the paper.

2. METHOD

2.1. Background

GMRF has been applied for texture analysis by employing
estimated parameters as features, which are then used for tex-
ture classification [3, 12, 13] and segmentation [14, 15].

We define the 3D image as a set of grid points on 3D lat-
tice Ω with size H ×W × D and indexed by v = (i, j, k),
where {1 ≤ i ≤ H, 1 ≤ j ≤ W, 1 ≤ k ≤ D} . The local
conditional probability density function of the intensity value
gv at location v is defined by:

p(gv |yv+r, r ∈ Vv) =
1

√
2πσ2

exp

{
−1
2σ2

(
gv−λ−

∑
r∈Vv

αr(yv+r−λ)
)2
}

(1)
where gv is the central voxel at location v, surrounded by the
neighbors yv+r located at relative position r. The neighbor-
hood system is determined by Vv and assumed here to be P
voxels sampled over a sphere surface centered at v with ra-
dius R, so that Vv ∈ {θ, φ | 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}. The
interaction parameters αr measure the influence on gv by in-
tensity values yv+r, whereas λ is the mean of the 3D patch
since the 3D image is processed as a set of overlapping 3D
patches (known as estimation cube Ωv ⊂ Ω) to generate the
3D-GMRF model at each voxel. The 3D-GMRF model pa-
rameters αr , σ2 in Equation (1) are unknown and need to
be estimated by finding the best fit of model (1) to the texture
data. The maximum likelihood estimation (MLE) is used here
to estimate these parameters and it is computed by taking the
partial derivative of a log-likelihood function, with respect to
αr and σ2, and setting it to zero. The mean intensity λ of Ωv

is computed separately and is subtracted from the intensity of
Ωv to avoid dealing with a non-linear equation system which
is time consuming and may become unstable. Parameters αr

and σ2 are then calculated from Ωv , whose mean is subtracted
beforehand, leading to a set of linear equations for each voxel:
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Fig. 1. Overview of our proposed method. (a) Features are ex-
tracted using 3D-GMRF. (b)αv is encoded into binary codes.
(c) Descriptors are built in various ways.

αv =

( ∑
v∈Ωv

yvy
T
v + c2I

)−1( ∑
v∈Ωv

yvgv

)
(2)

σ2
v =

1

|Ωv|
∑
v∈Ωv

(gv −αvyv)2 (3)

where αv = row[αr] and yv = col[yv+r] for r ∈ Vv , I
is the identity matrix with the same size as observation ma-
trix yvy

T
v , the superscript T is the transpose operation, c is

a regularization parameter to ensure that the observation ma-
trix is non-singular and invertible [3]. The parametersαv and
σ2
v are estimated locally at each voxel v. The local estima-

tion is performed by sliding an estimation cube Ωv with size
w × w × w centered at each voxel v; then, the neighborhood
sphere is slid inside Ωv to collect overlapping samples that
are used for parameter estimation. Once the parameter es-
timation is performed for the current voxel, Ωv is moved to
the next voxel and the previous procedure is carried out. This
process produces a parameter volume in which each voxel
is composed of a feature vector fv = {αv, σ

2
v , λv}. These

parameters are employed as features to describe the local tex-
ture. In our previous method proposed in [3], the descriptor is
constructed by computing a histogram for each of calculated
parameters αv, σ

2
v , λv over the entire image volume prior to

being concatenated. However, this approach suffers from the
expensive computational cost required by concatenating the
histograms of multiple features, resulting in high-dimensional
features. This is because increasing the number of neighbors
leads to the increase of αv , which eventually results in high-
dimensional descriptors. Inspired by [16], we propose an im-
provement to the 3D-GMRF model to reduce the number of
features by encoding the parameter αv into a single code.

2.2. Binary feature extraction for 3D-GMRF

The feature vector αv is composed of the estimated param-
eters αr that characterize local texture by measuring the
strength of the relationship between the central voxel gv
and its neighbor yv . The dimension of αv is equivalent to
the number of neighbors distributed around gv . Encoding
αv into a single code, without losing its descriptive infor-
mation, helps to significantly reduce the computation time



Fig. 2. Computation time (in seconds) for the proposed de-
scriptors using different numbers of histogram bins.

required for texture classification. We used the binary en-
coding scheme, proposed in [5] , to encode the sign and
magnitude of αv . The vector αv is first decomposed into two
components represented by magnitude mv = |αv| and sign
sv = sign(αv) vectors defined at each voxel v. The next
step is to encodemv and sv into single codes as follows:

αm
v =

P−1∑
p=0

t(mv(p), tm)2p t(x, tm) =

{
1, x ≥ tm
0, x < tm

(4)

αs
v =

P−1∑
p=0

t(sv(p))2
p t(x) =

{
1, x ≥ 0

0, x < 0
(5)

where P is the length of αv , which is equivalent to the
total number of neighbors surrounding gv , tm is the mean
of mv over the entire volume. These encoded parameters
αm
v and αs

v encompass discriminative information about the
local texture and can be combined to construct descriptors
by computing either the joint or concatenated histograms
of αm

v and αs
v , and are denoted as GMRF3D

P,R(αm
v \α

s
v) and

GMRF3D
P,R(αm

v αs
v), respectively. An additional descriptor

can be constructed by exploiting the other estimated param-
eters of 3D-GMRF and is made from the concatenation of
histograms of all extracted features, i.e., αm

v , α
s
v, σ

2
v , λv , and

is denoted as GMRF3D
P,R(αm

v , α
s
v, σ

2
v , λv). Figure 1. shows

the construction of the proposed descriptors.

3. METHOD EVALUATION

3.1. Dataset, Settings, and Metrics

We evaluated our method on the RFAI synthetic database for
volumetric texture [18]. The database contains four datasets
generated by four different methods, and each dataset is com-
posed of four additional transformed subsets by applying ro-
tation, noise, smoothing, and subsampling transformation to
the normal subset of each dataset. Each of these subsets con-
tains several classes and each class is composed of 10 volu-
metric images with a size of 64×64×64. We used all datasets
with their associated subsets except the rotate subset, since we
were not interested in testing the rotation invariance property.

We applied our proposed method to each dataset in the
RFAI database. The neighborhood scheme was chosen as a

 

Fig. 3. Examples of a normal lung (Left) and a lung with
COPD (Right).

sphere with R = 1 and P = 42 sampled voxels, where the
size of the estimation cube Ωv was selected as w×w×w and
w = 4R + 1, leading to a size of 5 × 5 × 5. The similarity
between each of the two samples represented by the descrip-
tors was estimated using k-nearest-neighbors (kNN, k = 1)
with L1 employed as a distance metric. For each dataset, we
randomly selected 50% of each subset for training, while the
remainder was kept for testing. This was repeated 100 times
and then the mean and standard deviation were computed for
all classification accuracies. The classification accuracy was
calculated as the percentage of correctly classified samples
using leave-one-out strategy to cover all samples. The perfor-
mance of our proposed method was compared with the LBP
method, based on the decision tree presented in [17] using the
same RFAI dataset. Moreover, the method proposed here was
compared with our previous work presented in [3].

The results presented in Table 1 demonstrate the discrimi-
native power of our proposed descriptors. Although the three
proposed descriptors perform well, GMRF3D

P,R(αm
v αs

v), in
particular, achieves good classification performance and out-
performs the LBP-based method [17] involved in this ex-
periment. One of the advantages of GMRF3D

P,R(αm
v αs

v) is
that it is not influenced by increasing the number of neigh-
bors, as their equivalent parameters (i.e., αv) are encoded
into a single code, rather than computing the distribution of
every single coefficient. This means that the dimension of
the descriptor depends only on the number of histogram bins,
which results in a stable computation time. This is particu-
larly beneficial when multiresolution analysis is considered,
as it requires more neighbors to be sampled around the cen-
tral voxel. Figure 2 depicts the computation time required
by each proposed descriptor to classify each descriptor of a
dataset with 150 samples. This experiment was implemented
using a MATLAB R2019b environment running on Intel Core
i5 3.3 GHz processor with 8 GB of RAM. It can be observed
that GMRF3D

P,R(αm
v αs

v) requires less time than other descrip-
tors, combining high classification performance with less
computation time compared with our method proposed in [3].

4. APPLICATIONS FOR CHRONIC OBSTRUCTIVE
PULMONARY DISEASE DETECTION

In this experiment, the method proposed here is exploited
to solve a real-world problem. COPD refers to a group of
progressive lung diseases defined as a common, preventable,



Table 1. Classification accuracies [%] of our method and other methods using RFAI datasets.
Synthetic Texture Dataset

Descriptor Geometric Fourier Mixed texture Interpolated mean±std
noise normal smooth subsampling noise normal smooth subsampling noise normal smooth subsampling noise normal smooth subsampling

GMRF3D
42,1(αm

v αs
v) 99.77 100 99.82 98.92 99.96 99.04 98.68 97.81 99.78 99.92 99.34 100 93.80 95.95 93.78 96.90 98.34±2.13

GMRF3D
42,1(αm

v \α
s
v) 99.96 100 98.75 96.97 99.97 99.44 98.69 98.94 100 100 99.58 100 93.97 93.78 90.78 95.95 97.92±2.84

GMRF3D
42,1 (αm

v , α
s
v, σ

2
v , λv) 98.84 98.88 97.16 98.01 99.04 97.81 94.57 97.30 100 100 99.66 100 93.44 97.90 96.09 94.70 97.71±2.07

GMRF3D
42,1 [3] 98.80 99.60 98.40 97.60 96.66 97.33 98.66 95.33 97.60 98.80 100 100 96.99 98.66 90.30 97.66 97.65±2.32

LBP-based method [17] 99.44 99.76 99.68 100 98.40 98.13 97.87 97.78 99.44 99.36 98.72 100 91.21 94.36 89.40 97.79 97.58±3.17

and treatable disease, characterized by persistent respiratory
symptoms and airflow limitation due to airway and/or alveolar
abnormalities [19]. The pathological changes of this disease
affect lung texture appearance in HRCT scans. These textural
changes can be used to characterize the disease and, hence,
capturing these changes leads to the detection of COPD in
HRCT scans.

Our medical dataset consists of 19 healthy individuals
and 13 COPD patients, making a total of 32 subjects. Fig-
ure 3 shows examples of a normal lung and a lung with
COPD. The HRCT image volumes were obtained from this
dataset with size 256 × 256 × 256 and then our proposed
method was employed to distinguish between healthy indi-
viduals and COPD patients. The same settings and metrics
described previously were used in this experiment. Classifi-
cation performance was reported as classification accuracy,
sensitivity/recall, and specificity. We compared our proposed
method with two texture-based methods: 3D-GLCM [7], and
the local parameters histogram (LPH) [13]. For 3D-GLCM,
a set of texture features are derived from the 3D-GLCM
by using different angular directions and distances for each
HRCT scan. LPH is a 2D-GMRF-based rotation invariant
method and it is included in this comparison to investigate
the importance of texture found in 3D space for capturing
more meaningful information. In this experiment, LPH was
applied to each slice in the HRCT scans and the slices with
the highest classification accuracy were selected to ensure a
fair comparison.

The results of the classification performance of our pro-
posed method and of other comparative methods are pre-
sented in Table 2. These results demonstrate the excellent
discriminative power of our proposed method in distinguish-
ing healthy individuals from COPD patients. The perfor-
mance of our proposed method compared with LPH indicates
the significance of texture features extracted from 3D space in
providing more discriminative information that would help to
distinguish between different samples. Another advantage of
our method is that it does not require a large medical dataset
for the training stage. The lack of large training datasets in
the medical domain is a common case scenario. Therefore,
our method could be appropriate for applications in field of
medicine.

Further investigation was also carried out here to evalu-
ate our method in identifying the differences between differ-
ent groups of the COPD dataset, in order to understand which
group tends to be at risk of COPD. The differences were iden-

Table 2. Comparison of our method with other texture-based
methods using the COPD dataset

Method Results[%]
Accuracy Sensitivity/Recall Specificity

GMRF3D
42,1(α

m
v αs

v) 90.6 100 84.21
LPH [13] 81.25 100 68.42
3D-GLCM [7] 75.00 61.54 82.21

Table 3. Differences between COPD, healthy smokers (HS)
healthy non-smokers (HNS) groups of the COPD dataset.

Group COPD-HNS COPD-HS HS-HNS
Distance 1.07 0.92 0.75

tified by measuring the minimum Euclidean distance between
the features of each two groups. Table 3 demonstrates that
the healthy smokers group tends to be closer to COPD com-
pared with the healthy non-smokers group. It is also no-
ticeable that despite healthy smokers being closer to COPD
than healthy non-smokers, they are still relatively close to
each other, which is potentially because their lungs have not
been significantly affected by COPD and, thus, the textural
appearance is still identical to that in the lungs of healthy non-
smokers.

5. CONCLUSION

In this paper, we introduce new descriptors based on 3D-
GMRF for volumetric texture classification. The proposed
descriptors are built by encoding the estimated parameters of
3D-GMRF into binary codes and computing their distribu-
tion over the whole volumetric image. We demonstrate that
employing the encoding strategy for 3D-GMRF parameters
improves classification performance using synthetic datasets
of volumetric textures. Our new descriptors are successfully
employed for COPD detection in the HRCT lung scans with-
out requiring a large training dataset. Furthermore, we show
that the descriptors can indicate healthy smokers’ tendency to
COPD. Future work aims to extend these descriptors to rota-
tion invariant descriptors to be able to capture different texture
patterns under random 3D rotations.
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