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ABSTRACT

Single image depth estimation is a challenging problem. The current
state-of-the-art method formulates the problem as that of ordinal re-
gression. However, the formulation is not fully differentiable and
depth maps are not generated in an end-to-end fashion. The method
uses a nave threshold strategy to determine per-pixel depth labels,
which results in significant discretization errors. For the first time,
we formulate a fully differentiable ordinal regression and train the
network in end-to-end fashion. This enables us to include bound-
ary and smoothness constraints in the optimization function, lead-
ing to smooth and edge-consistent depth maps. A novel per-pixel
confidence map computation for depth refinement is also proposed.
Extensive evaluation of the proposed model on challenging bench-
marks reveals its superiority over recent state-of-the-art methods,
both quantitatively and qualitatively. Additionally, we demonstrate
practical utility of the proposed method for single camera bokeh so-
lution using in-house dataset of challenging real-life images.

Index Terms— Single image depth estimation, deep learning
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1. INTRODUCTION

Single image depth estimation (abbreviated as SIDE hereafter) has
applications in augmented reality, robotics and artistic image en-
hancement, such as bokeh rendering [1]. However, the problem is
highly under-constrained, a given 2D image can be mapped to any
distinct 3D scene in real world. Recently, with the advent of deep
learning, the problem of SIDE has witnessed significant progress [2–
18]. Many SIDE methods train an encoder-decoder style network
using a pixel-wise regression loss [19]. However, it is challenging
for the network to regress true depth of a scene—with focal length
adjustments, two different cameras placed at different distances from
a target scene can capture identical 2D images [20, 21].

Inspired from [8], recently Fu et al. [10] proposed an ordinal
regression based approach called DORN which outperformed other
SIDE methods by a significant margin. However, it needs to be noted
that DORN is trained using ordinal classification loss, while for in-
ference the authors apply a nave threshold strategy on the classifica-
tion output to determine per-pixel depth label. The depth maps gen-
erated with this strategy do not obey smoothness and boundary con-
straints, and have severe discretization artifacts (see Fig. 1c). Con-
sequently, the depth maps are not suitable for practical applications.
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in any current or future media, including reprinting/republishing this mate-
rial for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

(a) Input (b) Ground-truth (c) DORN[10] (d) AcED

Fig. 1: Example comparison with current state-of-the-art [10].

In this work, we solve this important problem, while also advancing
the state-of-the-art on challenging benchmarks.

2. RELATED WORK

Eigen et al. [2, 3] were first to attempt deep learning based SIDE.
They also proposed a scale-invariant loss term for training a robust
depth estimation network. [4] integrated conditional random fields
(CRFs) into a CNN to learn unary and pairwise potentials of CRF.
[5] proposed a residual learning based depth estimation model with
faster upconvolutions. [7] proposed a two-streamed network to es-
timate depth values and depth gradients separately. [8] presented
a pioneering approach by formulating depth estimation as a clas-
sification problem which outperformed all the previous methods.
[9] proposed a deep attention based classification network, it in-
volved re-weighting of channels in skip connections to handle vary-
ing depth ranges. Recently, [10] proposed an ordinal classification
based approach which outperformed all the existing methods. How-
ever, depth estimation in [10] is not performed in end-to-end fashion,
leading to sub-optimal results and depth artifacts. [11] proposed to
estimate a coarse scale relative depth map which serves as a global
scene prior for estimating true depth. [12] advocated the use of large
rectangular convolution kernels based on the observations on depth
variation along vertical and horizontal directions. [13] and [14] used
attention mechanism [9] to fuse multiscale features maps. [15] pro-
posed a piecewise planar depth estimation network to perform plane
segmentation task. [17] utilized Fourier transform based approach to
combine multiple depth estimations.

Existing methods primarily focus on improving pixel-wise accu-
racy which does not usually correlate with qualitative aspects, such
as depth consistency, edge accuracy and smooth depth variations
[22]. As a result, many current state-of-the-art methods generate
depth maps which are not suited for practical applications. To sum-
marize, following are the major limitations in existing methods: (a).
many methods adopt pixel-wise regression approach which is a dif-
ficult learning task, (b). classification based SIDE approaches do
not utilize output probability distribution during training, (c). many
methods achieve good quantitative scores, however, the depth maps
lack practical utility. In this work, we address these important lim-
itations with several novel formulations in network design and loss
function. The proposed approach targets quantitative as well as qual-
itative aspects of depth estimation. The proposed model–AcED–
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Fig. 2: Design of the proposed model AcED (best view in color).

generates Accurate and Edge-consistent Depth and achieves state-of-
the-art results on challenging benchmarks. AcED also has a practical
utility, as it enables challenging single camera bokeh application.

Following are the major contributions of this work: (a) a novel
two stage SIDE approach comprising of ordinal classification and
pixel-wise regression. (b) a novel fully differentiable variant of or-
dinal regression for end-to-end training. (c) a novel confidence map
computation technique derived from proposed fully differentiable or-
dinal regression. (d) extensive experiments and ablation studies to
demonstrate the advantages of algorithmic choices. (e) we show the
utility of the proposed model in a challenging real life application.

3. PROPOSED APPROACH

3.1. Architecture Overview

Fig. 2 shows the detailed architecture of AcED, it can be conceptu-
ally divided into three subnetworks:

3.1.1. Dense Feature Extraction

SIDE is an ill-posed problem and it requires high degree of scene
understanding. Existing methods adopt a CNN pre-trained on scene
recognition task for dense feature extraction. Popular options in-
clude VGGNet [23], ResNet [24], DenseNet [25] and SENet [26].
In this work, we adopt SENet-154 as the backbone encoder network
because of its superior performance on image classification task.

3.1.2. Depth Estimation

This is the coarse scale depth estimation subnetwork which is trained
using proposed ordinal regression loss. It estimates a coarse scale
depth map along with a confidence map (see Section 3.3). This sub-
network (comprising of green blocks and the fully differentiable or-
dinal regression block in Fig. 2) upsamples the high-level feature
maps using the low-level information via skip connections.

3.1.3. Depth Refinement

This is the depth refinement subnetwork (see Section 3.4), it takes
coarse scale depth map, confidence map and multiscale low-level
feature maps as input to correct the low confidence areas and gener-
ate depth map with improved structural information.

3.2. Depth Discretization

In order to formulate depth estimation as a classification problem,
the depth map is discretized into multiple classes, where each class
corresponds to a unique depth value. Similar to [10], we adopt spac-
ing increasing discretization. If the depth range of a given training
dataset is [α, β] and K is the desired number of discretization lev-
els, a spacing-increasing discretization can be achieved by uniformly

(a) True distribution (b) Estimated distribu-
tion

Fig. 3: Enabling fully differentiable ordinal regression.

discretizing the depth range in logarithmic space. Mathematically,
the ith depth discretization threshold ti is computed as follows:

ti = elog(α)+
log(

β
α

)+i

K (1)

In Eq. 1, i ε [0, K). We set K=48 in all the experiments. This
value is significantly less than that used by DORN [10] (K=68).
However, as it will be shown in Section 4.4, the proposed model still
outperforms DORN [10] and other recent state-of-the-art methods.

3.3. Fully Differentiable Ordinal Regression

First, we explain the ordinal classification technique. As described
in Section 3.2, the ground-truth depth maps are discretized into K
levels. K − 1 binary classifiers are employed to train the depth esti-
mation subnetwork, where the ith classifier learns to predict whether
the depth value of a given pixel is greater than the depth value be-
longing to label ti. To train the classifiers, aK−1 size ground-truth
rank vector is created for every pixel. As an example, if the actual
depth value of a given pixel p belongs to (ti, ti+1], the ground-truth
rank vector for the pixel is encoded as [1, 1, 1, , 0, 0], such that the
first i values are set to 1 and remaining K− 1− i values are set to 0.
Fig. 3a shows the graphical representation of a sample rank vector.
The depth estimation subnetwork outputs 2 ∗ (K − 1) feature maps
where every two consecutive feature maps correspond to the output
of a binary classifier. The pixel-wise ordinal classification loss on
this 2 ∗ (K − 1) channel output is computed as follows:

L(w,h) = −
l−1∑
k=0

log(P kw,h)−
K−1∑
k=l

log(1− P kw,h) (2)

In Eq. 2, l − 1 is the ground-truth depth label. This loss is com-
puted over all the pixels indexed using width and height tuple (w,h).
Here, P kw,h is computed by softmax operation over 2k and 2k + 1
channel, where k ε [0, K).

To generate depth map from the classification output during in-
ference time, Fu et al. [10] employ a nave threshold technique and
convert the estimated probability distribution of every pixel to a bi-
nary rank vector. Finally, the depth value of a pixel is set to tc+tc+1

2
,

where c denotes the count of 1s in the binarized rank vector and
ti refers to the ith depth discretization threshold (see Section 3.2).
The depth map inferred in this manner does not follow boundary and
smoothness constraints. Moreover, as a result of this hard inference
technique, the network cannot be trained in an end-to-end manner,
leading to suboptimal results.

In this work, we first analyze the true and estimated probability
distribution of the rank vector of a pixel (see Fig. 3). Mathemati-
cally, the area of the true distribution curve in Fig. 3a corresponds to
the true depth label of the pixel. Similarly, in the estimated distribu-
tion in Fig. 3b, the area of the distribution curve corresponds to the



Fig. 4: Multiscale feature fusion module. Input feature maps from
fisrt four encoders are upsampled to a common scale and combined
using 1x1 convolution after residual refinement.

expected depth label of the pixel. Hence, the expected label p of a
pixel can be computed from its estimated rank vector as follows:

p =

∫ K−1

0

f(k) (3)

This computation is fully differentiable and allows us to train the
network in complete end-to-end fashion. It also enables continuous
and smooth depth transitions. The expected depth labels (treated
as i in Eq. 1) obtained for all pixels using Eq. 3 are converted to
approximate true depths (coarse depth in Fig. 2) using Eq. 1, the
depth range [α, β] is considered same as that of the training dataset.

Additionally, we propose to measure the confidence associated
with coarse depth map estimation. The confidence measure for the
estimated depth of a given pixel point (w,h) can be defined as its
variance from the expected depth label. Ideally, the estimated rank
vector should have probabilities closer to 1 before the expected depth
label and probabilities closer to 0 after the expected depth label.
Hence, the confidence value of a pixel can be computed as follows:

C(w,h) =

∫ p
0
f(k) +

∫K
p

1− f(k)
K

(4)

Here, p is the expected depth label for a pixel (w,h).

3.4. Structure Refinement Module

We add a structure refinement module to refine the coarse scale depth
map. This is a residual block with two 3x3 convolutions which takes
the coarse scale depth map, confidence map and output of multi-
scale feature fusion module as input to generate a refined depth map.
Fig. 4 shows the design of multiscale feature fusion module which
takes low-level feature maps from the encoder as input and upsam-
ples them to a desired common scale. The upsampled low-level fea-
ture maps are then processed by different residual blocks with two
convolution layers and finally all the feature maps are concatenated
and merged using 1x1 convolution.

3.5. Pixel-wise Depth Regression Losses

The depth refinement subnetwork is trained using pixel-wise regres-
sion losses. We use natural logarithm of the absolute difference be-
tween the estimated and ground-truth depth and their gradients as
our loss function. The weights of these two loss terms are deter-
mined empirically using the validation dataset. In Eq. 5a and 5b, D
andDgt refer to estimated and ground-truth depth maps respectively.

Llog(D,Dgt) = log(|D −Dgt|+ 0.5) (5a)

Lgrad(D,Dgt) = log(| 5x D −5xDgt|+ 0.5)

+ log(| 5y D −5yDgt|+ 0.5)
(5b)

Fig. 5: Qualitative evaluation of depth refinement. From left to right:
input image, coarse scale depth map, confidence map and refined
depth map. Notice the region inside black circle and area near edges.
Table 1: Quantitative evaluation of model variants in ablation study.

rel ↓ log10 ↓ rms ↓ δ1 ↑ δ2 ↑ δ3 ↑
Baseline 0.122 0.052 0.546 85.6 97.1 99.3
AcED 0.115 0.049 0.528 87.04 97.4 99.3

4. EXPERIMENTS AND ANALYSIS

4.1. Datasets

4.1.1. NYU Depth V2

NYU Depth V2 [27] dataset contains 464 indoor scenes captured
with Microsoft Kinect. Like existing methods, we train our model
on predefined 249 scenes and evaluate on 654 test images. To reduce
training time, we sampled 15000 training images from 249 scenes
which is 8x lesser than DORN [10]. For training, we resize input im-
ages from 480x640 to 288x384 and randomly crop regions of size
256x352. Similarly, test images are resized to 288x384 and the es-
timated depth map is upsampled to original resolution of 480x640
for comparison against ground-truth. We adopt the evaluation pro-
cedure of recent methods [12, 17, 18, 28] which use center crops of
size 427x561 from estimated and ground-truth depth maps.

4.1.2. iBims-1

iBims-1 [22] is a new benchmark which aims at evaluating depth
estimation methods on important qualitative aspects, such as depth
boundary errors, depth consistency and robustness to depth range.
This dataset contains 100 images with dense depth ground-truth and
is only used for evaluation purpose. Thus, this dataset is also useful
to test the generalization of SIDE methods.

4.2. Implementation Details

PyTorch framework was used for implementation. Adam optimiza-
tion [29] was used with initial learning rate 2x10−4 and momentum
term 0.9. A polynomial learning rate decay policy was applied with
power term 0.9. The proposed model was trained on NYU Depth
V2 dataset [10], while iBims-1 dataset was used only for evalua-
tion. The model was trained for 50 epochs using batch-size 16 on 4
NVIDIA P40 GPUs. Data augmentation in the form of random crop,
brightness, contrast and color shift was performed on the fly.

4.3. Ablation Study

In order to justify our algorithmic choices, we train and evaluate
the following two models on NYU Depth V2 dataset: (a) Baseline:
This model does not include confidence map computation and depth
refinement submodule and it is trained using ordinal classification
technique. (b) AcED: This model includes confidence map compu-
tation and depth refinement submodule and it is trained from scratch
in end-to-end fashion with same settings as baseline model.

Table 1 shows the quantitative comparison between the baseline
model and AcED. It can be seen that AcED achieves significant im-



(a) Input (b) Ground-truth (c) DORN[10] (d) AcED

Fig. 6: Qualitative comparison on NYU Depth V2 dataset.

Table 2: Quantitative comparison with recent state-of-the-art on
NYU Depth V2 (as per evaluation procedure in Section 4.1.1).

rel ↓ log10 ↓ rms ↓ δ1 ↑ δ2 ↑ δ3 ↑
Eigen & Fergus
[2] 0.158 - 0.639 77.1 95.0 98.8

Chakrabarti
[28] 0.149 - 0.620 80.6 95.8 98.7

Xu [6] 0.121 0.052 0.586 81.1 95.4 98.7
Li [7] 0.143 0.063 0.635 78.8 95.8 99.1
Zheng [11] 0.139 0.059 0.582 81.4 96.0 99.1
Heo [12] 0.135 0.058 0.571 81.6 96.4 99.2
Xu [14] 0.125 0.057 0.593 80.6 95.2 98.6
Liu [15] 0.142 0.060 0.514 81.2 95.7 98.9
Qi [16] 0.128 0.057 0.569 83.4 96.0 99.0
Lee [17] 0.139 - 0.572 81.5 96.3 99.1
DORN [10] 0.116 0.051 0.547 85.6 96.1 98.6
Lee [18] 0.131 - 0.538 83.7 97.1s 99.4
Zou [30] 0.119 0.052 0.580 85.5 96.6 99.1
AcED 0.115 0.049 0.528 87.04 97.4 99.3

provement in all the quantitative metrics, proving the benefit of the
proposed network and loss function design. In Fig. 5, it can be ob-
served that the confidence map displays low confidence values near
small gaps and occlusion regions. It can be seen that the depth areas
with low confidence values are corrected in the refined depth map.

4.4. Results and Discussions

Finally, we evaluate AcED against the state-of-the-art methods.
Standard metrics, viz., mean absolute relative error (rel), mean log10
error, root mean squared error (rms) and accuracy under different
thresholds (δi < 1.25i where i = 1, 2, 3) are used for evaluation
(for detailed description refer [2]). Additionally, we use the new
metrics proposed in [22] for evaluating qualitative aspects, such as
depth boundary error (DBE), directed depth error (DDE) and pla-
narity error (PE). DDE measures accuracy of depth at a given plane,
PE and OE together reflect the accuracy of object shapes.

Table 2 shows the quantitative comparison of AcED with state-
of-the-art methods on NYU Depth V2 dataset. AcED outperforms
the recent state-of-the-art on majority of metrics. The accuracy δ1
of AcED is 1.54 percentage points better than the second best score.
The slightly lower rms value of AcED can be attributed to spac-
ing increasing discretization coupled with long-tailed depth distribu-
tion, which leads to increased error in far depth regions. In Fig. 6,
the qualitative results show clear benefits of the proposed appraoch,
the depth maps of AcED are visually closer to ground-truth, have
smooth depth variations and sharp edges compared to DORN [10].

Table 3 and Fig. 7 respectively show the quantitative and quali-
tative results of AcED on iBims-1 dataset [22]. Note that iBims-1 is

(a) Input (b) Ground-truth (c) DORN[10] (d) AcED

Fig. 7: Qualitative comparison on iBims-1 dataset. Note: iBims-1
has different depth range and it is not used for training.

Table 3: Quantitative evaluation on iBims-1 leaderboard.
rel↓ log10↓ rms↓ δ1 ↑ δ2 ↑ δ3 ↑ DDE↑ PE↓ OE↓ DBE↓

Eigen
[3] 0.25 0.13 1.26 0.47 0.78 0.93 79.88 5.97 17.65 4.05

Laina
[5] 0.26 0.13 1.20 0.50 0.78 0.91 81.02 6.46 19.13 6.19

Liu
[4] 0.30 0.13 1.26 0.48 0.78 0.91 79.70 8.45 28.69 2.42

Li
[7] 0.22 0.11 1.09 0.58 0.85 0.94 83.71 7.82 22.20 3.90

Liu
[15] 0.29 0.17 1.45 0.41 0.70 0.86 71.24 7.26 17.24 4.84

DORN
[10] 0.24 0.12 1.13 0.55 0.81 0.92 82.78 10.50 23.83 4.07

SharpNet
[31] 0.26 0.11 1.07 0.59 0.84 0.94 84.03 9.95 25.67 3.52

AcED 0.20 0.10 1.03 0.60 0.87 0.95 84.96 5.67 16.52 2.06

used only for evaluation and its depth range is considerably different
from NYU Depth V2. AcED tops the official leaderboard of iBims-1
benchmark with significant improvement in several metrics. AcED
scores better on metrics associated with qualitative aspects, such as
DDE, PE and DBE. The DBE of AcED is 17.5% lower than the sec-
ond best score, indicating high accuracy of depth boundaries. The
lower PE and OE values of AcED reveal that it is able to preserve
object shapes in depth map much better than other methods.

It is important to note that [10, 17] perform multiple inferences
or combine multiple depth estimates to generate final depth map.
In contrast, AcED performs depth estimation in one forward pass.
Furthermore, DORN [10] uses 68 depth discretization levels and
120K training samples, whereas AcED is trained with 48 discretiza-
tion levels and only 15K training samples. AcED still outperforms
DORN [10] which can be attributed to the proposed novel formula-
tions which enable end-to-end optimization of the network.

Finally, Fig. 8 demonstrates the practical utility of AcED in the
challenging single camera bokeh application. AcED was first trained
using our in-house synthetic dataset [32] containing realistic human
centric images with dense depth ground-truth. To reduce the compu-
tation load for this task, the light weight MobileNet V2 [33] model
was employed as the backbone encoder network. The depth maps
generated by AcED on real life images were combined with our hu-
man segmentation mask [1] to apply realistic bokeh effect with vary-
ing background blur. The challenging multi-person use-case in first
row of Fig. 8 shows impressive bokeh result owing to accurate and
edge consistent depth map generated by AcED.

5. CONCLUSIONS

A novel deep learning based two stage depth estimation model was
proposed. This is the first work in literature to propose a two stage
approach comprising of ordinal regression and pixel-wise regression
for depth estimation. This work proposed a fully differentiable vari-
ant of ordinal regression for depth estimation. A novel confidence
map computation method for depth refinement was also proposed.
Systematic experiments were performed and the benefits of the pro-
posed novel formulations were evaluated in the ablation study. The
proposed model significantly outperformed the recent state-of-the-
art methods on challenging benchmark datasets and also achieved
top rank on one benchmark. The utility of the proposed model in a



(a) Input (b) AcED depth (c) Bokeh rendering

Fig. 8: Practical utility of AcED in synthesizing bokeh effect. Notice
increasing blur strenth with depth. Faces masked for anonymity.

challenging practical application was also demonstrated.
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