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ABSTRACT

Deep kernel map networks have shown excellent perfor-
mances in various classification problems including image an-
notation. Their general recipe consists in aggregating several
layers of singular value decompositions (SVDs) – that map
data from input spaces into high dimensional spaces – while
preserving the similarity of the underlying kernels. How-
ever, the potential of these deep map networks has not been
fully explored as the original setting of these networks focuses
mainly on the approximation quality of their kernels and ig-
nores their discrimination power.

In this paper, we introduce a novel “end-to-end” design
for deep kernel map learning that balances the approximation
quality of kernels and their discrimination power. Our method
proceeds in two steps; first, layerwise SVD is applied in order
to build initial deep kernel map approximations and then an
“end-to-end” supervised learning is employed to further en-
hance their discrimination power while maintaining their effi-
ciency. Extensive experiments, conducted on the challenging
ImageCLEF annotation benchmark, show the high efficiency
and the out-performance of this two-step process with respect
to different related methods.

Index Terms— Deep kernel networks, deep map net-
works, supervised end-to-end learning, image annotation.

1. INTRODUCTION

Kernel learning has been an active research field in the last
two decades with many applications ranging from support
vector classification [1] to regression, through dimension-
ality reduction [2]. More recently, an extension of kernels
known as deep kernel networks (DKNs) has attracted a par-
ticular attention [3–8] following the resurgence of neural
networks [9, 10]. These deep kernels – defined as nonlinear
and recursive combinations of standard positive semi-definite
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(p.s.d) kernels [8] – are proven to be successful in describing
and comparing highly nonlinear data. However, the downside
of DKNs resides in their limited efficiency; indeed, the com-
putational complexity of these networks scales linearly w.r.t.
their depth and quadratically w.r.t. the size of training data,
and this makes their evaluation clearly intractable for large
(and even mid) scale problems.

According to the kernel theory (see for instance [11]),
any p.s.d kernel admits an implicit or explicit map in a high
(possibly infinite) dimensional Hilbert space. Considering
this property, an interesting alternative to kernels, is to design
their associated maps explicitly. In the related work, ker-
nel map approximation techniques include (i) the Nyström
expansion [12] which obtains low-rank kernel maps using
uniformly sampled data without replacement, (ii) the ran-
dom Fourier sampling (proposed by Rahimi and Recht [13]
for gaussian kernels and extended to group-invariant kernels
in [14]) and (iii) the explicit kernel map design for additive
homogeneous kernels [15]. Other solutions rely rather on the
strength of deep learning (such as [16]) and aim at design-
ing explicit kernel representations using deep map networks
(DMNs); the latter make it possible to build maps whose
inner products approach the original DKNs while being deep
and highly efficient. A more recent extension, in [17], further
enhances the approximation quality of DMNs using unsu-
pervised learning. Nevertheless, the discrimination power of
DMNs has not been fully investigated in these works; indeed,
these networks are biased towards the underlying DKNs and
their design ignores the targeted classification tasks.

Following the tremendous success of deep representation
learning [18] particularly in image classification (see for in-
stance [19–23]), we introduce in this paper an “end-to-end”
framework that further enhances the discrimination power of
the learned DMN representations. Our DMN inputs (associ-
ated to standard kernels such as polynomial kernel) are for-
warded to output layers through intermediate projection and
activation operations. In contrast to the aforementioned ker-
nel approximation techniques which are mainly unsupervised,
our formulation is both “deep and supervised” and proceeds
by a greedy (layerwise) SVD decomposition followed by an
“end-to-end” supervised learning that improves the discrim-
ination power of the DMNs while maintaining their approx-



Fig. 1. This figure shows a three-layer deep map network (DMN); each rectangular
block corresponds to the explicit map of an – input, intermediate or output – layer in
the underlying deep kernel network (DKN). The last fully connected layers are used for
classification (better to zoom the PDF version).

imation quality w.r.t. the underlying DKNs. Note that our
work is related to the method in [7, 24] which approximates
the maps of gaussian kernels using convolutional neural net-
works and the recent work of deep neural mapping proposed
by Li and Ting [25] which combines SVMs and kernel maps.
Our method is also related to [26] which proposes deep radial
kernel networks to approximate gaussian kernel SVMs and
also the method in [27] that considers a deep hybrid neural-
network based on random Fourier features combining neural
networks and kernel machines. However, these related meth-
ods as well as those cited earlier, are either shallow or re-
stricted to a sub-class of kernels (including gaussians) while
our solution in this paper is deep and targeted to a more gen-
eral class of deep nonlinear kernels.

2. DEEP KERNEL MAP NETWORKS

A deep kernel is defined as a multilayered network whose
units – denoted as {κ(l)p }l,p – correspond to (input or interme-
diate) kernels with κ(l)p (., .) = g(

∑nl−1

q=1 w
(l−1)
p,q κ

(l−1)
q (., .));

here g is a nonlinear activation, p refers to the p-th unit of
the l-th layer, with l ∈ {1, . . . , L}, p ∈ {1, . . . , nl} and
q ∈ {1, . . . , nl−1}. Considering p.s.d input kernels {κ(1)p }p
(such as linear, polynomial and gaussian), provided that the
weights {w(l−1)

p,q }l,p,q are positive and resulting from the clo-
sure of the p.s.d w.r.t. sum and product, any intermediate ker-
nel is at least conditionally p.s.d for a particular class of acti-
vation functions (including hyperbolic tangent and exponen-
tial). Extra details about the setting of these weights together
with the activation functions that guarantee the conditional
positive semi-definiteness can be found in [8].

Considering the above definition, a conditionally p.s.d
kernel κ(l)p admits an explicit (either exact or approximate)
map φ̂lp(·) s.t. κ

(l)
p (x,x′) ' 〈φ̂lp(x), φ̂lp(x′)〉; here φ̂lp(x)

is a mapping that takes x from an input space into a high
dimensional Hilbert space. Let S = {xi}Ni=1 denote N sam-
ples taken from our training set; assuming the kernel maps
{φ̂1p(·)}p of the first layer known (either exactly or tightly

approximated [28]), we recursively define the explicit map
φ̂lp(·) of the p-th unit and the l-th layer as

φ̂(l)
p (x)> =

(
g(〈φ̂l,cp (x), φ̂l,cp (x1)〉) . . . g(〈φ̂l,cp (x), φ̂l,cp (xN )〉)

)
U(l)
p ,

(1)
where > denotes the matrix transpose operator and g(·) stands
for an activation function taken, in practice, as hyperbolic for
intermediate layers and exponential for the final layer, and

φ̂l,cp (x) =

(√
w

(l−1)
p,1 φ̂

(l−1)
1 (x)> · · ·

√
w

(l−1)
p,nl−1 φ̂

(l−1)
nl−1

(x)>
)>

.

(2)
In Eq. (1), U

(l)
p = VΛ−1/2 is a transformation matrix ob-

tained by solving the following eigenproblem

Kl
pV = VΛ, (3)

here Kl
p is the kernel matrix of κ(l)p on S . Fig. 1 shows an

example of a DMN architecture obtained using Eqs. (1) – (3).
Considering the maps of these equations one may introduce
the following proposition.

Proposition 1 Let S = {xi}Ni=1 be a subset of N samples
and let Kl

p be a gram-matrix whose entries are defined on

S. Let U
(l)
p = VΛ−1/2 with V, Λ being respectively the

matrices of eigenvectors and eigenvalues obtained by solving
Eq. (3). Considering ‖.‖2 as the `2 (matrix) norm and K̂l

p

as the gram-matrix associated to {〈φ̂(l)p (x), φ̂
(l)
p (x′)〉}x,x′∈S

with Eq. (1) and Eq. (2), then the following property is satis-
fied ∥∥K̂l

p −Kl
p

∥∥
2
= 0. (4)

Details of the proof are omitted and can be found online1.
More importantly, this proposition shows that the inner prod-
ucts obtained using kernel maps in Eqs. (1) – (3) are equal
to the original kernel values if data belong to S; otherwise
one may at least show that

∥∥K̂l
p − Kl

p

∥∥
2
 0 when N is

sufficiently large.

3. END-TO-END LEARNING

As designed above, DMNs significantly reduce the computa-
tional complexity of DKNs especially on large scale datasets.
However, with this particular unsupervised setting, DMNs fit
their DKN counterparts but ignore the underlying classifica-
tion tasks. Besides, kernel map design as shown in Eqs. (1)
and (2) considers only {φ̂l,cp (xi)}i,l,p and {U(l)

p }l,p as train-

ing parameters of DMNs while {w(l)
p,q}l,p,q are fixed and taken

from DKNs. As a result, the potential of DMNs is not fully
explored for supervised classification. In what follows, we
propose an end-to-end supervised framework that further en-
hances the discrimination power of DMNs.

1https://www.dropbox.com/s/pdpixj73xwxjevz/suppIcip2020.pdf?dl=0



Algorithm 1: End-to-end supervised DMN learning

Input: Parameter setting; set the learning rate η > 0.
Initialization: {w(l)

p,q}, {φ̂l,cp (xi)}i, {U(l)
p,q}, {ωk}k,

l ∈ {1, . . . , L}, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K}.
1 repeat
2 Optimize {ωk}k by LIBLINEAR toolbox;
3 Compute the gradients ∂E

∂φ̂L
1 (xi)

by Eq. (7);

4 Compute the gradients ∆U
(l)
p , ∆φ̂l,cp (xi) and

∆w
(l)
p,q,∀l ∈ {L− 1, . . . , 1};

5 Update these parameters by gradient descent:
U

(l)
p ← U

(l)
p − η∆U

(l)
p ;

6 φ̂l,cp (xi)← φ̂l,cp (xi)− η∆φ̂l,cp (xi);
7 w

(l)
p,q ← w

(l)
p,q − η∆w

(l)
p,q ;

8 until Convergence;

Let T = {(xi,y
k
i )}i be a training set whose samples be-

long to K classes; here xi is a training data and yk
i its class

membership, with yk
i = +1 iff xi belongs to class k, oth-

erwise yk
i = −1. For classification, a fully connected layer

with K units is stacked on top of the DMN whose parameters
{ωk}Kk=1 correspond to the normals of K hyperplane classi-
fiers. The decision function of each classifier fk is given by

fk(xi) = ω>k φ̂
L
1 (xi). (5)

With this decision function, a concept k is declared as present
in xi iff the score fk(xi) is positive. In order to learn the
DMN, we minimize a squared hinge loss criterion rather than
the widely used logistic loss, due to the fact that the former
has Lipschitz continuous gradients and shows good discrimi-
nation ability for classification [29]. Therefore, the loss E to
minimize is written as

min
φ̂
l,c
p ,U

(l)
p ,w

(l)
p,q,ωk

K∑
k=1

1

2
||ωk||22 + Ck

∑
i

max
(
0, 1− yki fk(xi)

)2
,

(6)
where the first term is an `2 penalization, the second one is an
empirical loss on training data and Ck controls the influence
of these two terms.

In order to minimize Eq. (6), we adopt an alternating opti-
mization strategy that makes training tractable: first, we opti-
mize the classifier weights by LIBLINEAR [30] while fixing
the parameters of DMN and then we update the latter while
fixing the classifier weights. In the second step, when classi-
fier weights are fixed, the gradient of E w.r.t. the output of
DMN (i.e. φ̂L1 (.)) is given as

∂E

∂φ̂L1 (xi)
= −2

K∑
k=1

Cky
k
i ωk max

(
0, 1− yki fk(xi)

)
. (7)

Then, we employ the chain rule [31] and we back-propagate
the above gradient to the preceding layers in DMN to ob-
tain the gradients of E w.r.t. {w(l)

p,q}l,p,q, {φ̂l,cp (xi)}i,l,p and

{U(l)
p }l,p. Finally, we update the DMN parameters using gra-

dient descent. The learning procedure is repeated till conver-
gence or when the maximum number of iterations is reached
(see more details in Algorithm 1).

4. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithm on the challenging and widely used ImageCLEF
annotation benchmark. The goal of image annotation (also
known as multi-label classification) is to predict the presence
of semantic concepts into images; note that concepts in this
task are not exclusive, so each image may be annotated by
one or multiple concepts and this makes image annotation a
highly challenging task.

ImageCLEF dataset [10] contains more than 250k (train-
ing, dev and test) images belonging to 95 different concepts.
We only use the dev set of 1000 images in our experiments,
as the ground truth is released only for this subset. The dev
set is split into two subsets: the first one is used for training,
and the other for testing. The discrimination power for anno-
tation task are evaluated using F-measures (harmonic means
of recalls and precisions) both at the image and the concept
levels (denoted as MF-S and MF-C respectively) as well as
mean average precision (mAP). Higher values of these mea-
sures imply better performances.

Firstly, we study the performance of ten handcrafted vi-
sual features (provided by the ImagCLEF challenge organiz-
ers). Four input kernels (linear, polynomial, RBF and his-
togram intersection) are considered for each feature, so we
have 40 input kernels in total. Then we learn a three-layer
DKN with a hidden layer of 80 units (i.e. twice the size of the
input as set in [8]), next we build an initial DMN by using
the method in [16]. Finally, we update this DMN using the
proposed end-to-end algorithm. The classification weights
in the final layer are randomly initialized, the trade-off pa-
rameter Ck is initially set using 3-fold cross-validation on the
training subset and the learning rate is empirically set to 10−6

to guarantee convergence. In these experiments, we observe
that 500 iterations are sufficient in order to converge to a sta-
ble solution. Tab. 1 shows the comparison between the DKN,
the initial DMN and the enhanced (end-to-end) DMNs on the
handcrafted features.

Secondly, we conduct another set of experiments by
taking into account the deep features from the pre-trained
VGG model on the ImageNet database (“imagenet-vgg-m-
1024”) [32], containing five convolutional layers and three
fully-connected layers. We use the outputs of the second
fully-connected layer in order to describe images. Similarly,
we consider four input kernels on top of the deep features,
and we repeat the experiments as described above. The com-
parative results are again shown in Tab. 1; the latter shows
performances for different settings including the original
DKN, its two initial DMNs (trained using SVD, with and



Fig. 2. This figure shows examples of annotation results using the original and the end-to-end DMNs (resp. denoted as “DMN-I”, “DMN-S” for handcrafted features and “DDMN-
I”, “DDMN-S” for deep features, “I” for initialization and “S” for supervised end-to-end learning.). “GT” stands for ground truth annotation while the stars mean the presence of a
concept in a test image.

Features Method MF-S MF-C MAP
GMKL([33]) 41.3 24.3 49.1
2LMKL([6]) 45.0 25.8 54.0
LDMKL ([8]) 47.8 30.0 58.6

DKN ([8]) 46.2 30.0 55.7
Handcrafted Ini. DMN ([16]) 47.7 29.4 53.2

feat. Sup. DMN (Proposed) 49.6 31.9 58.5
Uns. DMN ([17]) 48.0 29.8 53.3

Ft. DMN (Proposed) 50.2 32.2 59.2
DKN ([8]) 56.3 38.9 66.6

+Deep Ini. DMN ([16]) 56.7 39.7 66.4
feat. Sup. DMN (Proposed) 56.8 40.4 67.2

Uns. DMN ([17]) 56.4 39.3 66.5
Ft. DMN (Proposed) 56.2 40.5 67.4

Table 1. Comparison of annotation performances (in %) of different methods, using
handcrafted and deep features. In this table, “Ini.” stands for initialization, “Sup.” for
supervised, “Uns.” for unsupervised and “Ft.” for fine-tuned.

without unsupervised learning), and the two underlying “end-
to-end” DMN variants whose weights are initially taken from
these two initial DMNs respectively.

From Tab. 1, we observe that our proposed “end-to-end”
learning framework is able to further boost the discrimina-
tion power of DMNs compared to initial and unsupervised
DMNs as well as the original DKNs on both handcrafted and
deep features. Recall that “Ini/Uns” DMNs shown in Tab. 1
are designed only to fit the underlying DKNs without tak-
ing into account any label information. In contrast, “Sup/Ft”
DMNs make it possible to retrain their parameters while also
maximizing classification performances. Extra comparisons
against other kernel-based methods are also shown in Tab. 1
and they validate the effectiveness of the proposed algorithm.
Fig. 2 shows several annotation results in the test set for the
initial DMNs and the fine-tuned ones using supervised end-
to-end learning on handcrafted and deep features.

Tab. 2 shows a comparison of the average runtime in or-
der to process (classify) any given sample using DKNs vs.
DMNs. When using DKNs, this process requires evaluating
and propagating M kernel values through L layers between
a given sample and all training data in T with a complexity

Framework Sample size |T | Average runtime (in seconds)

DKN

500 0.305
1000 0.826
2000 2.822
5000 16.188

DMN

500 0.569
1000 0.566
2000 0.595
5000 0.594

Table 2. This table shows the average runtime in order to classify any given sample
using DKNs vs DMNs. When classifying a sample with DKNs, all the kernel values
between that sample and T should be evaluated prior to classification using the dual
SVM form; in contrast, DMNs rely on efficient explicit kernel map (+ primal SVM)
evaluations. These performances were obtained on a workstation with four Xeon CPUs
of 3.2GHz. In all these experiments |S| = N = 1000.

O(M2L|T |); here M = maxl nl (i.e., upper bound on the
width of DKN). When using instead DMNs, the complexity
of evaluating the kernel maps in Eqs. (1) and (2) is indepen-
dent from T and equal toO(MLN2); see also Tab. 2. Hence,
when |T | ≤ N and provided that M < N , DKNs are more
efficient while larger values of |T | make DMNs more and
more efficient with respect to DKNs.

5. CONCLUSION

We introduced in this paper an “end-to-end” design of deep
map networks that effectively approximate the underlying
deep kernel networks while being highly efficient. The
strength of our method resides in its ability to fit not only
the original DKNs but also the targeted classification task.
Our method proceeds in two steps: first, an SVD step is
achieved in order to build the initial DMN architecture, fol-
lowed by an “end-to-end” supervised training step that fur-
ther enhances the discrimination power of our DMNs and
their parameters. Experiments conducted on the challenging
ImageCLEF benchmark show a clear and a consistent gain
of our “end-to-end” DMN design compared to other different
settings.
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