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ABSTRACT
There is a trend that digitalized clinical data increases dramat-

ically every year. Part of data is multi-modal with imaging

and non-imaging data such as phenotypic and genetic infor-

mation. Though the success of CNNs has empowered a wide

range of applications in learning from the imaging data, incor-

porating both the imaging and non-imaging data complemen-

tarily to improve the diagnostic quality is still challenging. To

tackle this challenge, we propose a novel graph-convolutional

model which is based on the proposed concept of edge adapter

for learning an adaptive population graph from a multi-modal

database. The edge adapter can be jointly optimized with

the proposed graph convolutional neural network for semi-

supervised node classification. Experimental results on two

challenging multimodal medical databases demonstrate the

potential of our method in learning from multi-modal data for

disease diagnosis.

Index Terms— Multimodality learning, Graph convolu-

tion, Computer-aided diagnosis

1. INTRODUCTION

With the fast increasing volume of digitalized clinical data,

there is a growing need in processing and learning from

multi-modal data for computer-aided medical analysis[1, 2].

Non-imaging data, such as genetic information and pheno-

typic data (e.g., age, gender), which are complementary to

the imaging data such as CT and MRI scans, are usually col-

lected to derive more comprehensive diagnostic assessments.

Besides, non-imaging data can potentially reveal the correla-

tion between subjects and explain the representation variance

in the imaging features. Although off-the-shelf CNNs [3, 4]

are powerful in representing visual features for both natural

and biomedical images [5, 6], learning from both the imag-

ing data and non-imaging data complementarily in a unified

model to achieve better task performance is not straight-

forward. The method proposed in [7] applied a joint fully

connected layer on the concatenation of the extracted imag-

ing features and non-image features of a subject, followed

by a feed-forward neural network for the final prediction.

However, this approach fails to model the interaction and cor-

relation between subjects, leading to a weak generalization

when the multi-modal data of the subjects are heterogeneous

due to the acquisition variance. Simply concatenating the

multi-modal features may bring no benefits in improving the

performance of using a single modality (which is confirmed

experimentally). Graph models provide another perspective

to model this problem. Graph convolutional neural networks

(GCNs) [8, 9] have shown great potential in learning from

non-structural data and allowing semi-supervised learning

with less labels [10].

This paper presents novel graph-convolutional modeling

by introducing a new trainable module, called edge adapter,

to encode the non-imaging data into the connectivity of a pop-

ulation. In this setting, a population graph represents multiple

subjects in a database, where each node represents the main

features of a subject and each edge is defined to capture the

association between a pair of subjects. The proposed edge

adapter allows to learn the pairwise associations between sub-

jects based on the non-imaging data such as phenotypic in-

formation (e.g., age, gender and site) during the training of

the followed GCN model. While the goal is to predict the

disease state of the unlabelled subjects under the supervision

of the labeled ones in a population graph, the learned graph

can be easily applied on clustering analysis by thresholding,

which is new. We mathematically show that the edge adapter

in conjunction with spectral graph convolutions [8] is differ-

entiable for gradient descent optimizations. Thus, the overall

model can be trained end-to-end from different modalities to

improve diagnostic performance. Experiments on two chal-

lenging multimodal databases confirmed the superiority of the

proposed method.

2. METHODOLOGY

In this section, we further present the proposed model, called

Edge Adaptable GCN (EA-GCN), for incorporating the

multimodal data in a database for disease prediction. The

overview of the pipeline is shown in Fig. 1. The EA-GCN

model accepts the imaging and non-imaging data of N sub-

jects and represent them as a population graph (partially

labeled) via the edge adapter (EA), followed by our GCN

architecture for semi-supervised node classification [10],

yielding a fully labeled diagnostic graph.
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Fig. 1. Overview of the proposed EA-GCN model. ED: edge dropout, GC: graph convolution, R: ReLU, FC: fully connected

layer, Sof: softmax activation. Colors in the graphs: green and orange - labelled disease states, grey - unlabelled.

2.1. Learning a Graph Representation for Multimodal
Data with EA

Given the observation of N subjects composed of imaging

and non-imaging data, where only a subset of subjects are

labeled (e.g., healthy or diseased), we aim to construct a pop-

ulation graph G = (V,E,W ) with |V | = N vertices and W
being the edge weights, such that each vertex v ∈ V repre-

sents the diagnostic features of a subject and each edge cap-

tures the association between two subjects concerning their

non-image measurements (e.g., age and gender) and disease

state. We define vi ∈ RC as a C-dimensional feature vec-

tor extracted from the imaging data of subject i, under the

observation that the imaging data (e.g., microscopic image,

functional Magnetic Resonance Images) usually provide the

most important evidence for diagnosis. The modeling of the

edge weights is critical for representing the population graph

properly and substantially influences the performance of a

graph-based learning model (e.g., GNNs or GCNs). Previous

methods [11, 12] used hand-crafted affinity metrics for com-

puting the edge weights to construct a static similarity graph,

which require to fine-tune different thresholds for different

modalities. The threshold tuning can be overwhelming when

the number of modalities increases and the constructed static

graph can be inappropriate for the task (seen in our experi-

ments). We proposed to define the edge weight between the

i-th and j-th vertex wij as a learnable function of their non-

imaging measurements which provide complementary infor-

mation, via the proposed Edge Adapter module. This results

in a non-static population graph with adaptable edge weights.

Hence, the EA-GCN model is able to learn the graph rep-

resentation for multimodal data without using hand-crafted

similarity metrics.

Edge Adapter The edge adapter is a crucial module to

model the associations between subjects and builds the con-

nectivity in a population graph accordingly. As depicted in

Fig. 2, the edge adapter consists of a twin network (before

L1), which accepts distinct inputs xi and xj , and a metric

N FC

L1 FC

R

S
i
g

Xi

Wi,j

hi

hj

FC R . . .

N
Xj

lE FC layers

FC RFC R . . .

Fig. 2. The neural network architecture of Edge Adapter. N:

normalization, L1: L1 distance layer. Sig: sigmoid activation.

network to score the association between them in the latent

space [13]. The non-imaging inputs xi and xj are first nor-

malized by rescaling to [0, 1] interval and subtracting mean

element-wise, to avoid the vanishing gradient problem in

back-propagation, which is important in this problem as data

from different modalities has varying statistical properties.

The twin network parallelly encodes the normalized inputs

into two feature vectors hi and hj by two multi-layer per-

ceptrons (MLP) with sharing weights using lE hidden layers

(lE = 1 in experiments). Formally, the metric network scores

the association between vertex i and j as

Wi,j = σ(
∑

d

αd|h(d)
i − h

(d)
j |)

, where σ is the sigmoid activation function and αd is the d-th

dimension trainable parameter defined in the fully connected

layer after the L1-distance layer. This computes the weighted

L1 distance of the two non-imaging feature vectors combined

with sigmoid activation to map onto the [0, 1] interval. The

trainable parameters in the edge adapter are initialized using

K. He initialization [14].

Notice that the population graph is constructed on both

the labeled and unlabeled subjects, which allows to perform

semi-supervised learning with graph convolutional neural net-

works [10]. The population graph acts as a regularizer in

training to force the GCN model to aggregate both the labeled



and unlabelled nodes for prediction to minimize the cross-

entropy loss on the labeled set. Moreover, during testing,

the learned associations between an unlabelled subject and its

neighboring nodes should provide additional references for

disease prediction via graph convolutions, especially when

the imaging data of the centered subject is imperfect or is ob-

tained from a diverse distribution.

2.2. Differentiable EA-GCN on Adaptive Graphs

In this subsection, we discuss our GCN model on the adaptive

population graph. We employ Chebyshev graph convolution

(ChebGConv) [8] in EA-GCN for its weighted graphs. This

operation is a spectral approach which exploits the fact that

spatial graph convolutions can be computed in the Fourier do-

main as multiplications using the tool of graph Fourier trans-

form (GFT) [15].

Background A spectral convolution of a graph signal x ∈
RN with a filter gθ is defined as gθ � x = UgθU

Tx, where

UTx is the graph Fourier transformation of x, U is the ma-

trix of eigenvectors of the normalized Laplacian L = IN −
D−1/2WD1/2 with D being the diagonal degree matrix. As

performing the above spectral convolution is computationally

expensive (O(N2)), [8] proposed to approximate gθ with a

truncated expansion of Cheybyshev Polynomials Tk(x) in K
orders. The Chebyshev Polynomials are defined recursively

as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and

T1(x) = x. Accordingly, in ChebGConv, the convolution of

a graph signal x with a filter gθ′ parameterized by θ′ ∈ RK is

given as gθ′ �x ≈ ∑K
k=0 Tk(L̃)θ

′
kx, where L̃ = 2

λmax
L− IN

is the rescaled Laplacian and λmax is the largest eigenvalue

of L.

Let us consider a convolution layer l + 1 in the network

and the corresponding input graph Gl = (V l, El,W l) with

|V l| = N nodes represented by feature vectors Hl ∈ RN×Cl

where Cl is the dimensionality of each node feature vector

in layer l. Based on the above discussion, the convolution

operation can be derived as

Hl+1 =

K∑

k=0

Tk(L̃)H
lΘl

k (1)

, where Θl
k ∈ RCl×Cl+1

are the weights in the k-th order

Chebyshev Polynomial filter. While Θl
k works as a node fea-

ture transformer, the polynomials Tk(L̃) acts as a k-localized

aggregator, i.e. it combines the neighboring nodes that are

k-step away from the central node.

Regularized GCN The architecture of our graph convolu-

tional neural network is shown in Fig. 1. We propose to

apply an edge dropout layer on the input graph, which ran-

domly zeroes out a fraction of edges, acts as a data augmenter

and increases the sparsity of the graph to reduce overfitting.

We keep the architecture relatively shallow to avoid the over-

smoothing problem in deepening GCNs [16]. The rest of the

architecture consists of lG K-order Chehbyshev graph con-

volutional layers equipped with ReLU non-linearity and ends

with a fully connected layer with softmax activation (K = 3,

lG = 2 for ABIDE and lG = 1 for ODIR in experiments).

Cross-entropy loss computed on the labeled nodes is used to

train the GCN and Edge Adapter model concurrently.

After training with SGD, the output diagnostic graph (Fig.

1) are fully labeled with each node representing the predicted

disease state (i.e., class) of a subject and the edge weights

capturing the pairwise associations between subjects.

Differentiability Let us consider the overall model, where

spectral graph convolutions are performed on an adaptive

graph of which the edge weights depend on the trainable

module EA. It requires new formulations to prove it is op-

timizable with SGD. To optimize the parameters α in EA,

we need to guarantee the final loss L is differentiable w.r.t.

α. By chain rule, we can derive ∂L
∂α = ∂L

∂Hl
∂Hl

∂W
∂W
∂α . Both

∂L
∂Hl and ∂W

∂α are differentiable independently as they corre-

sponds to the back-propagated gradients in the GCN model

and EA model alone respectively. The key is the deriva-

tive of the feature vectors of a node w.r.t. the input edge

weights ∂Hl

∂W . For a K = 1 order ChebGConv, we can derive

∂Hl

∂W

∣∣
K=1

= ∂(IN−D−1/2WD1/2)
∂W = ∂(D−1/2WD1/2)

∂W based

on Eq. 1. Since the polynomial term Tk(L̃) for higher order

ChebGConv is defined recursively, after expanding Tk(L̃)

we can prove that ∂Hl

∂W is still differentiable for K > 1 by

induction and is not always zero. Thus, the EA-GCN is

differentiable and can be optimized end-to-end.

3. EXPERIMENTAL RESULTS

We evaluate the proposed method on two challenging medi-

cal databases, i.e., the Autism Brain Imaging Data Exchange

(ABIDE) database and the Ocular Disease Intelligent Recog-

nition (ODIR) database.

3.1. Autism Disease Diagnosis on the ABIDE Database
Dataset and Experimental Settings The ABIDE database

[1] collects data from 20 different acquisition sites and shares

functional magnetic resonance imaging (fMRI) data of 1112

subjects with corresponding phenotypic data (e.g., age, gen-

der and acquisition site) for identifying Autism Spectrum Dis-

order (ASD) from normal. For a fair comparison with the

ABIDE state of the art [17, 11], we choose the same 871 sub-

jects composing of 403 normal and 468 ASD individuals and

perform the same preprocessing and feature extraction steps.

Hereby a C = 2000 dimensional feature vector is derived

from the fMRI data to represent the brain functional connec-

tivity of a subject, as a node in the graph where the phenotypic

data are the input non-imaging data. 10-fold stratified cross-



Table 1. Comparison with the baselines and recent state-of-

the-art (SoTA) methods on the ABIDE database. INI: both

imaging (I) and non-imaging data (NI) are used. × means

only imaging data is used. JFC: joint fully connected layer

to concatenate features of I and NI. θ is a threshold tuned for

computing a static similarity graph in [11]. P: Parameters (K).

Methods INI ACC(%) AUC(%) P.

Ridge Classifier × 65.30 70.5 2
DNN × 71.99 74.16 550

DNN-JFC [7] � 72.10 73.48 635

Abraham et al.[17] × 66.80 - -

Parisot et al.[11] θ = 2 � 75.50 81.05 96

Parisot et al.[11] θ = 3 � 71.87 82.02 96

Kazi et al. [12] � 75.66 79.10 290

EA-GCN � 80.17 83.70 97

validation is employed for evaluation as in [11], from which

we report the mean accuracy and AUC.

Quantitative Results In Table. 1, we can see that the pro-

posed approach outperforms the competing methods substan-

tially. Simply concatenating the features of multi-modal data

into a deep neural network (DNN-JFC) only brings marginal

improvement (0.1%) compared to using one modality (DNN).

Comparatively, graph model-based methods ([11, 12] and

ours) show more promising results in leveraging the multi-

modal data on ABIDE. The recent SoTA methods [11] and

[12] require to finetune the affinity thresholds to construct a

static similarity population graph. We can see that the perfor-

mance of [11] varies a lot under different thresholds (θ = 2
and θ = 3). While Kazi et al. [12] using InceptionGCN

can reach 75.66% accuracy after finetuning, our EA-GCN

model delivered significantly more promising diagnostic per-

formance with 80.17% accuracy and 0.837 AUC with less

parameters. Ablation results in Table. 1 highlight the im-

portance of using the proposed Edge Adapter to learn an

adaptive graph from multi-modal data. Eliminating EA from

our model and replacing the adaptive graph with a random

graph (i.e. edges are connected uniformly at random between

subjects) or the hand-crafted similarity graph [11, 12] instead

highly deteriorates the original performance. Meanwhile, on

the same hand-crafted similarity graph, our GCN architecture

yields improved performance (77.26% over 75.50%), which

demonstrates the effectiveness of our regularized GCN.

Table 2. Ablation study for the proposed EA-GCN approach

on the ABIDE database. Rnd: random, Sim: similarity.

Methods Accuracy(%) AUC(%)

w/o EA, RndGraph-GCN 75.43 78.60

w/o EA, SimGraph-GCN 77.26 80.30

w/ EA, AdaptiveGraph-GCN 80.17 83.70

3.2. Ocular Disease Diagnosis on the ODIR Dataset

The ODIR dataset [18] contains fundus photographs of left

and right eyes and non-imaging data including age, gender

and diagnostic words collected from 5000 patients in differ-

ent medical centers. We select a set of 1500 annotated sub-

jects with fair imaging quality in the experiments. Each pa-

tient is labeled for 7 types of ocular diseases including di-

abetes, glaucoma, etc. We compared our method with two

SoTA CNNs and the graph-based approach [11], using 5-fold

cross-validation. To construct the graph, we employed a CNN

pre-trained on ImageNet without classifier to extract a C di-

mensional feature vector (C = 3072 for InceptionV4 [19]

and C = 2048 for EfficientNet-B0 [4]) from the images of a

patient. Diagnostic words are not used to avoid label leaking.

Table 3 compares the proposed method with recent state-

of-the-art approaches. We can clearly see that the EA-GCN is

able to boost the classification performance for EfficientNet

[4] from 0.8431 AUC to 0.8726 and for InceptionV4 from

0.84 to 0.8639. On average, the proposed semi-supervised

multimodality learning method can improve the performance

of a trained CNN model by 2.67% on ODIR, by properly

learning to incorporate the complementary non-imaging data

encoded in the graph. It is interesting to note that the static

graph-based method [11], where the required thresholds are

already finetuned [11], downgrades the performance of Effi-

cientNet, which further implies the merits of constructing a

learnable population graph compared to a hand-crafted one.

Table 3. Comparison results on ODIR reporting mean AUC

from 5-fold CV. (I) or (E): InceptionV4 or EfficientNet as the

adopted feature extractor. D: Diabetic, G: Glaucoma, M: My-

opia, All: All 8 classes including normal.

Methods D G M All

InceptionV4 [3] 64.26 69.89 96.65 84.00

EfficientNet [4] 66.90 71.91 96.99 84.31

EA-GCN (I) 69.41 65.32 96.90 86.39

EA-GCN (E) 70.78 73.24 97.49 87.26
Parisot et al. [11] (E) 56.75 68.17 64.48 77.63

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a novel graph-convolutional

framework to tackle the challenges in learning from multi-

modal data for disease diagnosis, which leverages the pro-

posed edge adapter for population graph construction and the

designed GCN architecture for weighted adaptive graphs. Ex-

perimental results show the improved performance in two dif-

ferent domains, i.e., Austim disease prediction and ocular dis-

ease diagnosis, where we can clearly see the superiority of the

proposed concept of edge adapter in representing a popula-

tion graph for multimodality learning. This method provides

a new potential to unlock a better usage of imaging and non-

imaging data for computer-aided diagnosis in clinics.
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