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ABSTRACT

Graphs are useful to interpret widely used image processing meth-
ods, e.g., bilateral filtering, or to develop new ones, e.g., kernel based
techniques. However, simple graph constructions are often used,
where edge weight and connectivity depend on a few parameters.
In particular, the sparsity of the graph is determined by the choice of
a window size. As an alternative, we extend and adapt to images re-
cently introduced non negative kernel regression (NNK) graph con-
struction. In NNK graphs sparsity adapts to intrinsic data properties.
Moreover, while previous work considered NNK graphs in generic
settings, here we develop novel algorithms that take advantage of im-
age properties, so that the NNK approach can scale to large images.
Our experiments show that sparse NNK graphs achieve improved
energy compaction and denoising performance when compared to
using graphs directly derived from the bilateral filter.

Index Terms— Image representation, Graph construction,
Spectral Graph Wavelets, Graph Signal Processing.

1. INTRODUCTION

A recent trend in image processing has been to move from simple
non adaptive filters to image dependent filters such as the bilateral
filter [1], non local means [2], block matching [3], kernel regression
methods [4], expected patch likelihood maximization (EPLL) [5] or
window nuclear norm minimization (WNNM) [6]. One shortcoming
of these adaptive filters is that they cannot be efficiently described us-
ing traditional image domain Fourier techniques, since these models
are highly non linear. To solve this issue of interpretability, graph
based perspectives have been introduced to analyze data dependent
image processing models [7, 8]. In the graph formulation, pixels
corresponds to the nodes of a graph and are connected with edges
having edge weights capturing pixel similarity. [7, 9] shows the cor-
respondence between window based filters and graph based filtering
where the graph is formed by connecting each pixel (node) to only
those within a window centered at the pixel. This method of graph
construction for w X w filtering resembles a K -Nearest Neighbor
(KNN) graph with K = w? where neighbors are selected based on
their spatial location relative to the pixel at the window center. Thus,
the choice of w, similar to K in KNN graphs, can be considered a
hyperparameter offering coarse control of sparsity and complexity
of the graph representation.

In this work, we focus on graph construction for image repre-
sentation, a specific application which is often overlooked in data
driven graph learning methods [10]. Our proposed method extends
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to images recently introduced non negative kernel regression (NNK)
method [11, 12] for graph construction. Unlike earlier methods, our
framework leads to a principled way to construct sparse graphs that
can be combined with spectral graph wavelets and other graph sig-
nal processing tools [13, 14]. Relative to previous work [11, 12], the
key novelty in this paper is to exploit pixel position regularity, and
specific characteristics of kernels used for image filtering, to learn
image graphs in a fast and efficient manner, which allows us to scale
the proposed methods to graphs with millions nodes as required by
image processing applications. Experimentally, our image specific
simplifications lead to average speed ups in graph construction of at
least a factor 10 for w = 11, relative to the original NNK algorithm.

We focus our graph construction and filtering by taking the bilat-
eral filter graph as starting point, but the same can be adapted to other
image processing models that have a graph interpretation (e.g., those
described in [7]). Of particular relevance to our work is [15], where
the authors construct sparse graph alternatives by approximating the
inverse of the bilateral filter matrix. The authors motivate the idea
by drawing parallels to the graph construction methods that estimate
sparse inverse covariance or precision matrix of a Gaussian Markov
Random Field model [16]. The authors note that this method is ex-
pensive and resort to a heuristic algorithm which still can only be
used for small images [15]. In contrast, in this paper we are able to
apply our method to images with typical sizes.

We combine our method with Spectral Graph Wavelets [17] to il-
lustrate its benefits for image representation, showing that our graphs
have 90% fewer edges than bilateral filter graphs constructed with
11 x 11 window while offering better low frequency representation
and improved performance in the context of a simple denoising task.
The runtime of graph wavelets and other graph filter operations for
images are notably reduced due to the sparse nature of our graphs
(e.g., 15X faster than the same algorithm using BF graph).

2. PRELIMINARIES

2.1. Bilateral Filter

The bilateral filter (BF) can be interpreted as a graph filter on a
dense, image-dependent graph, with edge weights between nodes
(pixels) ¢ and j given by the kernel
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where @; and f; denote the position and the intensity of pixel 4,
respectively. The bilateral filter operation on graph signal f can be
interpreted as D' K f, where D is the degree matrix of the graph
and its inverse is used as a normalization. With this interpretation
it is also possible to develop alternative graphs, via symmetrization
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of D"'K [18] or sparsification of the original BF graph [15]. Note
that the pixel positions @ and the distances ||a; — x;||? in the BF
kernel (1) are image independent and are known in advance.

2.2. Non Negative Kernel regression graphs

Note that K; ; can be viewed as the inner product of two kernel
functions ¢; and ¢; [19]. Then, a non negative kernel regression
(NNK) graph can be computed by formulating graph construction as
a signal representation problem, where each node is to be approxi-
mated by a weighted sum of functions from a dictionary formed by
its neighboring nodes [11, 12]. At each node, we need to solve:
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where ¢; (corresponding to node ¢) is to be represented by a linear
combination of atoms (with weights given by @) from a dictionary
obtained from a set .S of neighbors (®g). As shown in [11, 12], it
is possible to associate a geometric interpretation to conditions that
determine whether two nodes are connected (kernel ratio interval
or KRI conditions). Thus, in contrast to KNN graphs, even when
window size w increases the number of connected nodes does not
necessarily grow, so that NNK graphs tend to be better at reflecting
the actual data topology.

A key contribution of this paper is to adapt NNK to image data,
and in particular taking into account the special characteristics of
image to apply the KRI conditions more effectively. Unlike in the
general case, where all data dimensions are irregular and unknown,
in image graphs pixel locations are regularly spaced and are known
before hand. This observation allows us to reduce the KRI condition
to simple intensity thresholding rules for removing neighbors in im-
ages (see section 3). Formally, the KRI theorem states that for any
positive definite kernel with range in [0, 1] (e.g. bilateral kernel (1)),
the necessary and sufficient condition for two nodes j and k to be
both connected to node ¢ in a NNK graph is
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The geometric interpretation of (3) is illustrated by Figure 1.

Fig. 1: Plane (yellow dashed line) associated to a connected node j
in NNK. Nodes in the blue region to the right of the plane will be
not be connected to node . This provides an intuitive explanation of
KRI: given that there is edge between node 7 and j, a farther away
node k in the same direction can be connected to ¢ only if it is more
similar to ¢ than j.

2.3. Spectral Graph Wavelet Transform

Given the adjacency matrix K of a graph G = (V,¢), the associ-
ated combinatorial graph Laplacian L is defined as L = D — K,

where D is the diagonal degree matrix given by D, ; = > ; Ki g
A graph signal is a function f: V — R defined on the vertices of
the graph. In the case of images, this corresponds to the intensity or
values defined at each pixel. The Graph Fourier Transform (GFT)
[13] is defined as the expansion of the graph signal in terms of the
eigenvectors of chosen graph operator, e.g., the graph Laplacian.

Spectral Graph Wavelets (SGW) [17] are based on defining a
scaling operator in the GFT domain, based on the eigenvectors of
the graph, analogous to the Fourier transform but for signals defined
on a weighted graph. The wavelet coefficients for a given signal at
scale s at a vertex ¢ are calculated as a function of a graph operator
Ty, = g(L) and the eigenpair (\;, e;) defining the GFT, namely
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These coefficients can be computed with a fast algorithm based
on Chebychev polynomials for approximating the scaled operator
function. We refer the reader to [17] for further details on approxi-
mations for practical realization of SGW.

3. NNK IMAGE FILTERING

Given the neighbor set at each node, NNK graph can be obtained
with O(K?®) complexity at each node, where K is the number of
neighbors. In this section, we present image specific simplifications
to compute NNK graphs efficiently.

3.1. Kernel Ratio Interval for images

The KRI condition of (3) allows us to identify neighboring nodes
(pixels in w x w window for images) that will have zero edge
weights, given knowledge of a connected node (Figure 1). From an
image point of view, this corresponds to removing graph edges to
pixels which are farther away when there exists pixels with similar
intensity that are closer.

Proposition 1. The necessary and sufficient condition for a pixel k

to not have an edge to pixel i given that pixel j is connected to pixel
ii.e8; 1 = 0[(0;; > 0)is given by
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Proof. Denote d; ; = ||x; — x;||* and similarly fi ; = || fi — f5]|>
Thus the bilateral filter weights can be rewritten as:
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Now, the contraposition of KRI theorem (3) gives a necessary and
sufficient condition for an edge (0; ) to be disconnected as
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Substituting for the bilateral weight kernel
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Thus, condition (7) is simplified as
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Taking logarithm on both sides and rearranging terms corresponding
to intensity and location we obtain after some manipulations

202
i+ —fhe<— (%cé) di;+di —diy, )
Using the simplification from Lemma 1, to replace d?’ it di E— df’k
and fﬁ i+ fj2, B ff i leads to (5) and concludes the proof.
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Proof. Omitted for space.

3.2. Sparse graph representation of images

The right term in (5) depends only on pixel locations and kernel pa-
rameters and can be determined for a given window size w and saved
before hand. As a further simplification we consider only threshold
factors (A = (xy —x;) " (x; — x;)) that are positive, corresponding
to regions along the same direction as the connected pixel j (see Fig-
ure 2a). This stands to intuition as the KRI plane (Figure 1) would
hardly influence the selection of pixels on the other side of the win-
dow. The order of the pixels in the window can be precomputed
by closest to farthest for a given window. Further, given the set of

A= (xk - x)T(xj - xi)
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Fig. 2: (a). (Best viewed in color) Simple scenario of 4 connected
neighbor and remaining pixels in a 7 x 7 window with their asso-
ciated threshold factor (A). For e.g, given pixel j is connected to
i, the proposed graph construction eliminates all pixel intensities in
green region (right of ¢) which satisfy the condition in Proposition 1.
The algorithm continues pruning by moving radially outwards con-
necting pixels that are not pruned and removing ones that are to be
pruned based on proposition until no pixel is left unprocessed.

(b). Average processing time per pixel for our proposed simplified
NNK and the original NNK construction. We observe a similar trend
on all our test images with the difference widening further for in-
creasing window sizes.

neighbors for each pixel after pruning, we approximate the weights
with the original bilateral kernel weights, instead of computing them
to satisfy the condition of (2). This can be justified by the fact that
both NNK and original BF kernel weights maintain the same relative

order of importance and would serve as good approximations. Let us
consider the simple case where only two nodes remain after pruning,
then NNK weights are given as
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The factor on the right with K ;, term is strictly positive and thus
the relative impact of the edges is preserved when NNK graph is
approximated with the original kernel weights.

Algorithm 1: Proposed NNK for Images

1 Function Precompute (w):

2 a = pixel positions in w X w, S = {pixelsinw X w}
3 window center =4, S =S — {i}

4 S =sort Sby ||&; — zi||> Vi €S

5 for j,k in S do

6 | A= (@ — ) (25 — @)

7 end

8 return Ordered window pixels S, Threshold factor A

Input: Image f € R™*", window size w, o, 0
9 Function NNK_Image_Graph () :

10 uw= (2—2)2 [S*, A] = Precompute (w)
11 for each pixel ¢ do
12 S=8", P={}
13 for j in S do
/* pick neighbors in spatial
distance sorted order */
14 if j in P then
15 ‘ continue // skip if pruned
16 P=P+ {5}
17 for pixel k in S with Aj;, > 0 do
/* consider pixels in same
direction as j */
13 if (fj — fu) " (fi — fi) < pA i then
19 | P=P+{k}, S=S—{k}
20 end
21 end
2 Wis=Kis, Wige=0
23 end

24 return Graph Adjacency W

4. IMAGE REPRESENTATION AND DENOISING WITH
NNK IMAGE GRAPHS

We validate experimentally the effectiveness of our proposed method
over the naive BF graph version in terms of energy compaction and
denoising performance.

4.1. Energy compaction

In this section, we evaluate our graph construction for image repre-
sentation. Variance of the wavelet signals is an indicator of informa-
tion content corresponding to the frequency band of the wavelet. As



can be observed in Figure 3, wavelets corresponding to our method
have very less information in the higher frequency bands which is
very natural for images as they are inherently smooth. Another fea-
ture to identify a good representation of images is the fraction of im-
age energy captured by each wavelet, i.e (|| f||?/||f||?). Figure 4
shows that NNK graphs capture much of the image energy earlier
than BF graph which corresponds to compact support in the wavelet
domain.

Varlance: 0.053076  Variance: 0.0018874 Variance: 0.0090016  Variance: 0.012047  Variance: 0.011824  Varlance: 0.0074292  Variance: 0.0011811

:0.0024435  Variance: 0.0060416  Variance: 0.0067412 Variance: 0.0033961  Variance: 0.001163  Variance: 9.5691e-05

Fig. 3: (Top: 11 x 11 Bilateral Filter Graph vs Bottom: Proposed
NNK Graph Construction) Energy compaction using spectral graph
wavelets. NNK graphs captures most of image in the lower bands.

Poly. degree = 4 Poly. degree = 6

| s
1 1
0 0
0 2 4 6 0 2 4 6
3 Poly. degree =12 3 Poly. degree =15
2 2
1 1
0 0
0 2 4 6 0 2 4 6

Fig. 4: The energy captured by BF Graph (blue) and NNK graph
(red) for different polynomial degree approximations of SGW. The
wavelets were designed with frame bounds A = 1.71, B = 2.35 as
designed in [17]. NNK consistently captures the image content bet-
ter than BF graph irrespective of the Chebychev polynomial degree.

4.2. Image Denoising

We consider the problem of image denoising to evaluate filtering
performance of our proposed graph. We consider 12 standard images
(256 x 256) used in image processing with Gaussian corruption at 5
different noise variances (o = 10, 15, 20, 25, 30). Weusea 11 x 11
window for constructing the graphs with hyperparameters chosen as
in [20]. Denoising is done on image signal corresponding to each
frequency band separately. The average performance and quantiles
for original BF [1], BM3D [3] and SGW based on BF graph and
proposed method are shown in Figure 5. A key thing to notice is
that performance worsens with SGW denoising using BF graph. We
attribute this to a shortcoming of the BF graph construction. Since
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Fig. 5: Denoising performance using SGW on BF graph and pro-
posed method with comparisons to original BF and BM3D algo-
rithms. NNK graphs achieves a significant improvement over the BF
Graph version in SSIM and PSNR. Our method improves SSIM of
the output while matching PSNR performance with original BF. The
BM3D method included for completeness shows that the proposed
graph method with BF kernel achieves comparable SSIM measures.

the resulting graph is dense, higher degree polynomials of the BF
adjacency used in SGW lead to averaging over larger window and
consequently to increased blurring.

5. CONCLUSION

We present an attractive framework for image representation using
graphs. The proposed graph is sparse and scalable with better en-
ergy compaction in its spectral bases than previously used window
based graph methods. Our graph construction is robust to a wide
range of window sizes and can be run in a parallel for even lower
computational complexity. Further, we explore the use of Spectral
Graph Wavelets which operates simultaneously in vertex and spec-
tral domain for image denoising. This approach allows us to lever-
age ideas from previously studied wavelet methods for images and
presents a potential research direction moving forward. In the future,
we would like to study the performance of our graph construction
with more complex filtering kernels such as those used in non local
means, BM3D, kernel regression to mention a few.
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