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ABSTRACT 

 
An increased interest in immersive applications has drawn attention to 
emerging 3D imaging representation formats, notably light fields and 
point clouds (PCs). Nowadays, PCs are one of the most popular 3D 
media formats, due to recent developments in PC acquisition, namely 
with new depth sensors and signal processing algorithms. To obtain high 
fidelity 3D representations of visual scenes a huge amount of PC data is 
typically acquired, which demands efficient compression solutions. As 
in 2D media formats, the final perceived PC quality plays an importance 
role in the overall user experience and, thus, objective metrics capable 
to measure the PC quality in a reliable way are essential. In this context, 
this paper proposes and evaluates a set of objective quality metrics for 
the geometry component of PC data, which plays a very important role 
on the final perceived quality. Based on the popular PSNR PC geometry 
quality metric, novel improved PSNR-based metrics are proposed by 
exploiting the intrinsic PC characteristics and the rendering process that 
must occur before visualization. The experimental results show the 
superiority of the best proposed metrics over state-of-the-art, obtaining 
an improvement up to 32% in the Pearson correlation coefficient. 
 
Index Terms— point cloud coding, objective quality assessment, PSNR, 
intrinsic resolution, density, precision. 
 

1. INTRODUCTION 
 

Nowadays, point clouds are a relevant 3D representation format due 
to the advent of efficient point cloud (PC) acquisition, coding and 
rendering solutions. Cultural heritage, geographical information 
systems, real-time 3D telepresence and autonomous navigation are just 
a few examples of immersive multimedia applications that can benefit 
from the PC representation format. Since a massive amount of data has 
to be stored and transmitted when dealing with PCs, lossy compression 
methods have to be used, aiming to reduce the PC representation bitrate 
while keeping the data fidelity/quality as high as possible. In this 
context, in January 2017, MPEG issued a Call for Proposals on Point 
Cloud Compression (PCC) [1]. This call led to the development of two 
PC coding solutions, notably the so-called Geometry-based Point Cloud 
Compression (G-PCC) standard [2], for static and progressive acquired 
content, and the Video-based Point Cloud Compression (V-PCC) 
standard [3], for dynamic content. These two different landmark PC 
coding schemes produce decoded PCs with rather different 
characteristics and artifacts. Naturally, objective quality assessment 
metrics that can accurately evaluate the perceived quality, notably when 
PC data is compressed, are critical to improve the final Quality of 
Experience offered to the end-users.   

Currently, there are several objective quality metrics available in the 
literature to automatically measure the PC geometry quality. One class 
of those objective metrics measure the degraded PC quality using point-
based distances [4]. For every point in a degraded/original PC, the 
nearest neighbor is obtained in the original/degraded PC and the 
Haussdorff distance or the mean squared error (MSE) based distance is 
computed over all pairs of points; this type of metrics is usually referred 
to as point-to-point (Po2Po) metrics. The main disadvantage of this type 

of metrics is that it does not consider the fact that PC points represent a 
surface of an object(s) in the visual scene. To solve this issue, point-to-
plane (Po2Pl) metrics [5] have been proposed, which model the 
underlying surface at each point as a plane; this plane is perpendicular 
to the normal vector at that point. Again, point-to-point distance of every 
point to its nearest neighbor is computed, which is then projected along 
the corresponding normal vector. This type of metrics results in smaller 
errors for the points that are closer to the surface. Currently, the MPEG 
adopted PSNR-based PC geometry quality metrics that use point-to-point 
MSE (D1) and point-to-plane MSE (D2) distances [6].  

Another proposal to measure PC geometry quality is to estimate the 
similarity between the underlying surfaces associated to the points in the 
original and degraded PCs [7]. If planes are used, the cosine similarity 
between normal vectors at two corresponding points can be used to find 
the similarity. Another type of point-based distance considers the 
reconstructed surface, by proposing point-to-surface (also called point-
to-mesh) distances [8]. In this case, a mesh is reconstructed on the 
reference PC and then, for each decoded point, the distance of the point 
to the reference mesh is computed. 

Naturally, all objective metrics attempt to have PC quality scores as 
close as possible to the human opinion scores. In this context, subjective 
studies to collect the opinion scores for different scenarios and 
applications are needed [9][10][11], especially to perceptually model the 
artifacts caused by popular PC codecs, such as the MPEG G-PCC and 
V-PCC. The opinion scores are fundamental to evaluate the objective 
metrics performance, i.e. the subjective-objective correlation between 
these scores and predicted quality values. In [12], it is shown that 
available metrics fail to predict accurately the quality of octree 
compression-like distortions. In [13], a subjective-objective study also 
shows that state-of-the-art metrics do not perform well to assess 
compressed PCs quality in the presence of different types of data and 
decoding distortions. However, the MPEG PSNR D1 and D2 have 
shown the best overall performance in two separate studies [14][15], 
despite their lower overall subjective-objective correlation. 

In this context, the main objective of this paper is to propose new 
quality metrics that measure the level of geometry degradation of PCs 
with different characteristics, e.g. content type, number of points and 
distribution of the points (sparse vs. dense). Due to the way that PCs are 
acquired and pre-processed (before coding), the intrinsic resolution, a 
measure of distance between points in the 3D space, plays an important 
role on the final perceived quality, not only to mitigate or highlight 
coding artifacts but also to measure the intrinsic PC quality (i.e. after 
acquisition). The main contributions of this paper are the following:  
• Propose and evaluate several geometry quality PSNR-based metrics 

that exploit the intrinsic characteristics of a PC. In this case, intrinsic 
resolution and precision are considered the most important intrinsic 
characteristics that influence the final PC quality. The main novelty 
regards the new intrinsic resolution estimators (Section 3). 

• Propose and evaluate a novel geometry quality PSNR-based metric 
that exploits the way that PCs are typically rendered. In this case, the 
intrinsic resolution is also considered but after rendering. This 
allows to significantly increase the quality metric performance, i.e. 
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to obtain higher correlation with human opinion scores. 
The quality metrics that are proposed and evaluated keep the 

simplicity of the state-of-the-art Po2Po and Po2Pl metrics and are based 
on the popular PSNR metrics that are currently being used in the MPEG 
3DG group to evaluate the performance of the MPEG G-PCC and V-
PCC codecs and new techniques and are among the best.  

The rest of this paper is organized as follows. Section 2 describes the 
state-of-the-art PSNR PC geometry quality metrics. Sections 3 and 4 
present the proposed metrics. Experimental results are presented and 
analyzed in Section 4 and Section 5 concludes the paper. 
 

2. PSNR-BASED GEOMETRY QUALITY METRICS 
 

This section describes the state-of-the-art PSNR metrics as currently 
defined and used by the MPEG group [6] to assess the geometry quality 
for compressed PCs, independently of the codec used, target quality or 
rendering solution. As it will be seen in sections 3 and 4, the MPEG 
PSNR metrics are the starting point for the proposed PC geometry 
quality metrics. 

In the MPEG PSNR-based geometry quality metrics, the PSNR is 
obtained from a normalization factor and the mean squared error (MSE), 
as defined in (1), which is computed from decoded to original PC 
direction as well as in the opposite direction. The PSNRs of the two 
directions are then combined to obtain a single symmetric PSNR value 
with the maximum pooling function, as defined in (2). 

PSNR!,# = 10 log$% '
(&'

)!,#
()** (1) 

PSNR = max	(PSNR!,# ,PSNR#,!) (2) 

In (1), (& is signal peak and )!,#()* is the average squared error (i.e. 
MSE) between all points in PC A and their corresponding nearest 
neighbor point in PC B. PCs A and B can be associated to original and 
decoded point clouds, respectively. 

MPEG defines two PSNR metrics, the so-called PSNR D1 and PSNR 
D2, that only differ in way the MSE is computed. In the PSNR D1, MSE 
is computed from the point-to-point distance or error 2⃗(4, 5) between 
each point in PC A and its nearest neighbor in PC B, )!,#+,'+,, according 
to (3) and (5); in (3), 5 is the nearest neighbor point in PC B to point 4 in 
PC A and 2⃗(4, 5) is error vector between two corresponding points and 
NA in (5) stands for the number of points in PC A. In the PSNR D2, MSE 
is still based on the distance between each point to its nearest neighbor 
but this distance is now computed from the projection of the point-to-
point error vector 2⃗(4, 5) along the normal vector of the underlying 
surface at point j in PC B,	67⃗ -, as formalized in (4) and (5); the obtained 
distance,	)!,#+,'+., is known as point-to-plane distance. 

)!,#
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)!,#
+,'+. = ‖2̂(4, 5)‖'' = (2⃗(4, 5). 67⃗ -)' (4) 

)!,#
()* =

1
;!

< )!,#
+,'+,/+,'+.(4)

∀1!∈!
 (5) 

Thus, PSNR D1 can be obtained using (3) in (5) and (5) in (1) while 
PSNR D2 can be obtained using (4) in (5) and (5) in (1). As far as the 
signal peak (& in (1) is concerned, the largest diagonal (LD) distance of 
the PC bounding box is typically used for non-voxelized data [16]:  

=> = ‖(?max, @max, Amax) − (?min, @min, Amin)‖' (6) 
where ?,	@ and A are the three geometry coordinates. When the LD of 
the PC bounding box is used as peak in the PSNR computation, the point 
coordinates are normalized to the range [0,1], which is equivalent of 
having both original and decoded PCs fitted to a unit size bounding box. 
However, note that if the two PCs have different sizes they can be scaled 
differently; this scenario may occur when the decoded PC has errors with 
a large magnitude.  

If PCs have been voxelized, the (point) coordinates lie on a regular 
3D (integer) grid with some fixed predefined precision (coordinates bit-
depth). Thus, point coordinates are bounded between zero and a constant 
integer related to the PC precision. For voxelized PCs, the peak for each 
coordinate, represented with C bit-depth precision, is: 

(8 = 29 − 1. (7) 
By applying the peak of each coordinate in (7), the signal peak value 

corresponds to:  
(& = √3(8 . (8) 

By using (8) in (1), PCs are scaled to the same precision and the PSNR 
is computed as follows: 

GH;I!,# = 10 log$% '
3(8'

)!,#
()** (9) 

Note that increasing the PC precision makes distances between points 
larger; for example, a PC with 11-bit precision has two times larger 
distances compared to the same PC with 10-bit precision. The 
normalization of the errors proposed in (9) makes the comparison of data 
in different precisions possible by compensating for this difference. 

However, none of these metrics account for differences in: 1) intrinsic 
PC characteristics, namely the intrinsic resolution used to represent the 
surface of the objects of the PC, and 2) viewing conditions, namely the 
important rendering process that influences the final PC quality and can 
mitigate or highlight some coding distortions [14]. The PC spatial 
resolution is a key factor, since the perceivability of details depends on 
the sampling frequency, the distance of the PC to the image plane and 
from the image plane to the observer; these last two are assumed fixed 
in this work. In practice, independently of the coding artifacts, the 
subjective evaluation of a given PC varies when these factors vary. 

 

3. INTRINSIC RESOLUTION PSNR-BASED QUALITY 
METRICS 

 
In this section, besides the usual error to account for coding distortions, 
the PC intrinsic characteristics are also exploited to design improved PC 
geometry quality metrics.  

In [5], the intrinsic resolution is used to normalize the geometric 
errors in the PSNR calculation (1) described in the previous section. The 
intrinsic resolution is difficult to measure since a point cloud is 
unstructured and the neighborhood of a point is more complex to define 
than that of a pixel in a 2D image. However, the PC intrinsic resolution 
concept is analogous to the spatial resolution of a 2D image and can be 
estimated from the distance of points to their neighbors [17]. This 
distance may not be uniform throughout the entire PC and requires the 
design of suitable estimators. Fig. 1 shows two PCs (scaled to the same 
height) with high (left) and low (right) intrinsic resolutions (i.e. dense 
and sparse), after point-based rendering with the same point size.  

 
Fig. 1. Two PCs with different intrinsic resolutions: dense (left) and sparse (right).  

Simple methods to estimate the PC intrinsic resolution were already 
proposed in the past, e.g. [5] suggests the maximum nearest neighbor 
(J;;) distance over all PC points. If ): is the distance of the point 4 to 
its nearest neighbor in PC O, then the intrinsic resolution can be 
estimated according to: 

 J;; = max
∀:∈;

): (10) 



The J;; is very sensitive to holes and local sparse areas, even if 
they are very small comparing to the PC size. In this context, the 
following two estimators are proposed in this paper to overcome this 
problem. First, the average nearest neighbor (K;;) that attempts to 
solve the problem of localized sparse areas: 

 K;; = L
1
;;

<):
'

:∈;
 (11) 

where, ;; is the number of points in the original PC O. Second, this 
metric can be generalized if the average of M > 1 nearest neighbors 
(K;;<) is used instead of the closest nearest neighbor used in (11), 
which may not be very reliable due to acquisition noise. The K;;< can 
be defined as: 

K;;< = O
1
;;

<P
1
M
<):,-

'
<

-=$
Q

:∈;
 (12) 

Quality metrics can thus be defined by using the intrinsic resolution 
estimators proposed above (11)-(12) as a normalizer to convert the mean 
square errors to PSNR values. This means that the peak (& parameter in 
(1) will correspond to one of the intrinsic resolution estimators computed 
over the original PC (10)-(12), instead of the largest diagonal distance 
of the bounding box (6) or the precision established in the D1 and D2 
metrics (8). In that way, PCs with different distances between points (i.e. 
more sparse or dense) would be normalized accordingly, i.e. all MSE 
errors would be scaled according to the estimated intrinsic resolution. 
However, all these metrics still do not consider the rendering process 
that is typically applied after decoding for visualization purposes. 

 

4. RESOLUTION ADAPTIVE PSNR-BASED QUALITY 
METRICS 

 
Point clouds are rendered as images or videos from one or more 
viewpoints before being shown on a 2D (or 3D) display, this means 
considering that some virtual observer is at some location in the 3D 
world space with some virtual camera setup that determines which parts 
of the point cloud are shown to the user.  

In this process, the distances between all points in a PC are scaled 
with respect to this viewing box and display resolution. The viewing box 
is defined by the virtual camera position, orientation and characteristics 
(e.g. field of view) and the 3D to 2D projection (often a perspective 
projection is used). Since PCs are always evaluated by the users after 
rendering, the final perceived quality does not only depend on the PC 
errors introduced by some processing step (in this case, coding) but also 
on the rendering process. In this section, a novel PC geometry quality 
metric is proposed based on the idea of estimating the intrinsic resolution 
but after rendering, i.e. considering the distance of each point to its 
nearest neighbors on the image plane observable by the user. This is 
hereafter referred to as rendering resolution and a procedure to estimate 
it is described next. 

 

4.1. Rendering Resolution Estimation 
 

The rendering resolution may vary differently in different parts of the 
PC due to several factors, e.g. orientation of the PC surfaces in the 3D 
world relative to the observer viewing location. Since the viewing 
location and other rendering parameters, e.g. distance of the PC to the 
image plane, are not known when some geometric quality metric is 
computed, it is assumed that the PC is viewed from all possible 
directions and from a fixed distance. This is a usual scenario in many 
applications (e.g. cultural heritage), however further optimizations are 
possible such as using multiple distances (or scales) as other 2D quality 
metrics such as MS-SSIM [18].  

Consider that a unit normal vector 67⃗ : is available for every R: PC 

point. Normal vectors, which are already used in point-to-plane PC 
quality metrics, can be quickly estimated using some state-of-the-art 
method. The rendering resolution estimation process is illustrated in Fig. 
2 and proceeds as follows: 
1. Define a local neighborhood S around point R:, which includes the 

closest (nearest neighbors) M points (represented by the six red dots 
in Fig. 2).  

2. Define a local plane tangent at point R:. This plane is perpendicular 
to the normal vector 67⃗ : and represents the PC surface at this point. 
This plane can also be seen as the image plane of the rendering 
process if the viewing direction (usually defined as a vector) is 
symmetric to 67⃗ : and the observer location lies along the viewing 
direction.  

3. Project all points of the S neighborhood, represented by the )⃗:,- 
vectors in Fig. 2, to the local plane tangent at point R: according to 
(13); in (13), )⃗:,- stands for the distance vector between point R: and 
its jth nearest neighbor. This step results in a vector for each 
projected point (represented by the red dashed arrows in Fig. 2), 
called planar distance vector	G>77777⃗ :,-, whose origin is R:.   

G>77777⃗ : = GTU5>.1?@()⃗:,-) = )⃗:,- − GTU5?A⃗ !()⃗:,-) (13) 
4. Estimate the rendering resolution as the average (planar) distance 

between point R: and their M local neighbors on the tangent plane. 
This is performed for all points R: to obtain a global estimation for 
the entire point cloud. In this case, averaging over all points resulted 
in a better estimation. Thus, the rendering resolution corresponds to 
the average over the entire original PC of the average (planar) 
distance between point R: and the M nearest neighbors in S, KG><, 
as formalized in (14). 

 KG>< =
1
;;

<P
1
M
<VG>77777⃗ :,-V'

'
<

-=$
Q

:∈;
 (14) 

Since KG>< includes the distance between points considering that 
some projection was performed in the rendering process, it is expected 
that it better reflects the intrinsic perceived PC quality when used in a 
geometry quality metric. The proposed resolution adaptive (RA) PSNR 
metric that exploits this factor is described next. 

 
Fig. 2.  Illustration of the proposed rendering resolution estimation process. 

 

4.2. RA-PSNR PC Quality Metric Design 
 

The proposed RA-PSNR objective metric aims to account for the PC 
intrinsic quality, by exploiting the intrinsic or rendering resolution as 
well as the precision used for the PC geometry coordinates. Ideally, the 
objective metric should compensate for any difference between PCs if 
one of these factors changes (e.g. precision) without having influence on 
the final perceived quality. For example, if the PC precision increases 
one bit without adding any new points, all the distances between points, 
used to calculate the intrinsic resolution, are now two times larger but 
the PC typically has a very similar perceived quality. In order to 
compensate for those factors, a density coefficient W is defined as: 

 W =
(8
T

 (15) 
where (8 is the precision (coordinate peak) calculated with (7), i.e. the 
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maximum possible distance, and T is the PC intrinsic or rendering 
resolution. The density coefficient corresponds to normalization of the 
intrinsic or rendering resolution (which is typically defined as the inverse 
of density) according to the PC precision. Using the state-of-the-art 
PSNR D1 and D2 metrics [6] defined by (9), all the errors (which 
represent a distance between points in the original and degraded PCs) 
are normalized according to precision. Therefore, the intrinsic or 
rendering resolution of the PCs proposed in Section 3 and 4.1, which are 
also distances between points should also be normalized accordingly. 
The proposed resolution adaptive RA-PSNR is defined in (16) and 
corresponds to using the density coefficient W to further scale the MSE, 
taking into account the intrinsic PC characteristics and the rendering 
process in the quality metric. 

RA-PSNR!,# = 10 log$%
3(8'

W)!,#
()* (16) 

By applying (15) in (16), the RA-PSNR can be written as: 

RA-PSNR!,# = 10 log$%
3T(8
)!,#
()* (17) 

The parameter T can be the intrinsic resolution from (10) to (12) or the 
rendering resolution from (14), computed from the original PC. 

 

5. PERFORMANCE EVALUATION 
 

This section evaluates the performance of the proposed PC quality 
metrics using point clouds coded with different codecs, notably the 
MPEG PC standard codecs. 

 

5.1. Subjective Test Conditions 
 

In these experiments, the MOS scores obtained in a previous subjective 
DSIS test described in [14] are used. The IST Rendering Point Cloud 
Dataset is publicly available in [19] and includes MOS scores and the 
original and decoded PCs. This dataset includes six PCs from the MPEG 
repository [6], which have been coded with three rates/qualities using 
three rather different PC codecs: i) octree-based codec from PCL [20]; 
ii) MPEG G-PCC standard [2]; and iii) MPEG V-PCC standard [3]. The 
quality scores were obtained for a session where the decoded PCs were 
rendered with a popular point-based rendering approach with uniform 
color and shading. Because there are no coloring and interpolation 
processes involved in this rendering, geometry coding artifacts are less 
masked. To evaluate the objective-subjective correlation performance of 
the proposed PC geometry quality metrics, non-linear regression has 
been used to map the computed objective quality scores (PSNR) into the 
MOS scale. Thus, based on the recommendation ITU-T P.1401[21], a 
monotonic cubic function was used to fit objective values to MOS scores 
and obtain predicted MOS: 

MOSp = $̀ + '̀? + D̀?' + È?E (18) 
where ?	is objective metric values and ̀ $, … , È are the regression model 
parameters. Then, the Pearson Linear Correlation Coefficient (PLCC) 
and Spearman Ranked Order Correlation Coefficient (SROCC) are used 
to assess the objective-subjective correlation, i.e. as measures of linearity 
and monotonicity of the prediction of perceptual quality made by the 
objective metrics. The following PC quality metrics were evaluated: 
1. MPEG PSNR D1 and D2 metrics: These benchmark metrics 

represent the state-of-the-art and were described in Section 2. Two 
variants are defined, using precision (G) and the largest diagonal 
(=>) distance of the bounding box as the signal peak. 

2. Proposed I-PSNR metrics: PSNR-based metrics where the J;;, 
K;;, K;;< intrinsic resolutions estimators (variants) described in 
Section 3 are used. The intrinsic resolution is used as the signal peak 
of the PSNR metric described in Section 2.  

3. Proposed RA-PSNR metrics: PSNR-based metrics where the 
proposed intrinsic and rendering resolution estimators K;;, K;;< 

and KG>< (variants) described in Section 3 and 4.1 are used. The 
RA-PSNR metric corresponds to (17) as presented in Section 4.2. 

For all the experimental results shown, the M parameter of K;;< and 
KG>< was set to 10, which was experimentally found as the value that 
provides the highest Pearson correlation with MOS scores. For all 
metrics, the performance of the normalization factors G, =>,J;;, 
K;;,K;;< and KG>< are shown for Po2Po and Po2Pl errors. 

 

5.2. Results and Analysis 
 

Table 1 shows the objective metrics performance for each PC codec 
and considering all data. The following conclusions can be made: 
• Proposed PC quality metrics vs benchmarks: The reference 

benchmark PSNR metrics are outperformed with the proposed RA-
PSNR or I-PSNR for all codecs individually and for all data. I-PSNR 
metrics can achieve higher performance than PSNR metrics for PCL 
and V-PCC while RA-PSNR is consistently better for all cases. The 
best overall performance is achieved for RA-PSNR with the rendering 
resolution KG>< variant, which was expected since it exploits the 
rendering process required for PC visualization. Moreover, for the all 
case, where different types of artifacts and PC characteristics must be 
accounted, 5.3% gains were achieved. 

• Quality metrics performance for PCL and G-PCC data: For PCL and 
G-PCC decoded data, the RA-PSNR proposed metric KG>< variant 
can reach a very high performance (95.2% and 94.0%, respectively), 
since it considers both precision and rendering resolution, i.e. the point 
cloud density observed by the user.  

• Quality metrics performance for V-PCC data: For V-PCC decoded 
data, I-PSNR K;;< variant performs slightly better than RA-PSNR 
KG><, because all PCs are coded in 10-bit with V-PCC and the 
intrinsic resolution is already a good estimator of the quality after 
rendering. In a general way, the benchmark PSNR metrics are very 
poor for V-PCC data but both the proposed I-PSNR and RA-PSNR 
were able to increase performance significantly, with 28% and 26% 
gains respectively, compared to PSNR, for point-to-plane metrics.  

TABLE I. PLCC PERFORMANCE OF THE PROPOSED PC OBJECTIVE METRICS 

 
 

6. CONCLUSIONS 
 

State-of-the-art PC geometry quality assessment metrics perform poorly 
since the impact of the intrinsic PC characteristics and the rendering 
process on the final perceived PC quality are not considered. In this 
paper, the popular PSNR based metrics are improved by proposing to 
include a normalization factor that accounts for changes in the intrinsic 
PC resolution after rendering, as well as PC precision. Experimental 
results show that the proposed metrics outperform state-of-the-art 
MPEG quality metrics by a significant margin. As future work, more 
characteristics of the rendering process may be included, such as 
viewing location and PC distance to the viewing plane. 
 

PLCC SROCC PLCC SROCC PLCC SROCC PLC SROCC
Po2Po 87.0 73.9 86.9 87.4 53.1 62.0 67.3 64.7
Po2Pl 89.6 80.9 83.4 85.6 51.4 49.6 70.3 65.6
Po2Po 83.3 82.3 86.0 89.3 48.9 54.1 70.4 68.6
Po2Pl 86.7 85.9 75.6 71.9 59.9 58.9 71.4 67.2
Po2Po 68.7 65.0 40.8 33.3 45.6 14.3 49.7 42.2
Po2Pl 69.6 66.7 44.1 39.7 49.8 25.4 52.1 43.4
Po2Po 92.2 89.0 79.3 76.3 66.6 61.0 64.7 52.5
Po2Pl 92.3 84.5 86.6 79.0 76.2 69.1 66.4 55.6
Po2Po 88.8 87.0 78.1 68.4 70.8 62.9 66.5 59.2
Po2Pl 90.8 87.5 75.3 68.2 79.6 74.0 67.4 62.6
Po2Po 92.8 86.8 84.9 82.5 49.2 45.6 68.9 64.0
Po2Pl 93.4 86.7 88.5 85.8 67.9 63.0 71.0 67.1
Po2Po 94.1 86.2 93.6 94.6 68.5 62.5 74.1 71.1
Po2Pl 95.1 91.3 94.0 94.0 77.1 73.7 74.9 72.5
Po2Po 94.1 85.2 93.7 94.8 59.9 59.7 74.0 71.4
Po2Pl 95.2 91.7 94.0 94.0 77.9 72.3 75.6 73.8

All

P

LD

MNN

Metric Variant Type G-PCC V-PCC

APDk

PCL

PSNR

I-PSNR

RA-PSNR

ANN

ANNk

ANN

ANNk
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