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ABSTRACT
Image-to-image translation (IIT) has made much progress re-
cently with the development of adversarial learning. In most
of the recent work, an adversarial loss is utilized to match the
distributions of the translated and target image sets. How-
ever, this may create artifacts if two domains have different
marginal distributions, for example, in uniform areas. In this
work, we propose an unsupervised IIT method that preserves
the uniform regions after the translation. The gradient ad-
justment loss, which is the L2 norm between the Sobel re-
sponse of the target image and the adjusted Sobel response of
the source images, is utilized. The proposed method is val-
idated on the jellyfish-to-Haeckel dataset, which is prepared
to demonstrate the mentioned problem, which contains im-
ages with different background distributions. We demonstrate
that our method obtained a performance gain compared to the
baseline method qualitatively and quantitatively, showing the
effectiveness of the proposed method.

Index Terms— Generative adversarial networks, image-
to-image translation, domain adaptation, image processing

1. INTRODUCTION

The purpose of the image-to-image translation (IIT) problem
is to learn a mapping from the source domain to the target do-
main. Many computer vision problems such as semantic seg-
mentation, super-resolution, image coloring, and single im-
age depth estimation can be considered as IIT problems. For
example, the semantic segmentation problem aims to group
the pixels of semantic elements such as cars and roads in the
image. The class of the object corresponding to each pixel
in the image is tried to be estimated. This approach can also
be considered as a transformation from the image to the class
label map.
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Methods such as DualGAN[1], DiscoGAN[2], and Cycle-
GAN [3] use adversarial training for both transformation from
source to target domain and from target to source domain. Be-
sides, the preservation of the original image is encouraged by
the cyclic consistency loss function when transforming from
source to target and then back to the source. The same loss
function is valid when converting from target to source and
then back to the target. Cyclic consistency has played an es-
sential role in increasing translation success.

In this study, the CycleGAN method is taken as the base-
line method. The CycleGAN method may create artifacts dur-
ing the translation of the uniform background of the image in
the source domain to the target domain. In this study, the
gradient of the source image is preserved after the transla-
tion in order to solve the mentioned problem. The gradient
estimation is obtained with the Sobel operators, and the gra-
dient adjustment loss function is defined on Sobel responses.
In addition to that, an adjustment constant is defined to scale
gradient between source and target domain, which increases
the quantitative performance. The contributions of this study
can be listed as follows.

• By defining the gradient adjustment loss function, the
gradient is forced to be preserved after the translation.
This loss function contributes to preventing background
distortion.

• The gradient of the source image is boosted or re-
duced by gradient adjustment constant that increases
the quantitative performance.

• Jellyfish-to-Haeckel dataset is prepared. The efficiency
of the proposed method is shown on this dataset.

In the second part of the paper, the studies on the pro-
posed method are mentioned. The proposed method, together
with the loss functions, is explained in the third section. In the
fourth section, details about the implementation are given. In
the fifth section, datasets are explained, qualitative and quan-
titative results are given. The paper is concluded in the last
section.
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2. RELATED WORKS

2.1. Generative Adversarial Networks

Generative adversarial networks (GAN), first proposed by
Goodfellow et al. [4], are frequently used in the solution
of the IIT problem. The success of the GANs in generating
realistic images has made these networks attractive to the IIT
problem. A fully connected neural network is used in [4],
and it is evaluated on relatively simple image datasets. How-
ever, it has shown limited performance in high-resolution
image generation. Radford et al. [5] proposed the deep con-
volutional neural network (DCGAN), adapting the network
architecture to the convolutional neural networks in the pi-
oneering study. Deconvolution layers in DCGAN enabled
generative networks to generate images at higher resolutions.
Mao et al. [6] stated that the cross-entropy loss functions used
in the mentioned methods might cause gradient loss problem.
They aimed to solve the problem by using the least-squares
loss function instead of the cross-entropy.

2.2. Image-to-image Translation

IIT problem can be studied with supervised and unsupervised
learning approaches. Pix2Pix method[7] is an example of a
supervised IIT method. The method uses conditional GAN,
which is conditioned on to the reference image. L1 loss be-
tween the reference and the generated image is utilized.

The CycleGAN [3] method took a similar approach. This
method defines the cyclic consistency loss function in addi-
tion to GAN loss, eliminating the need for a paired dataset.
DualGAN[1] and DiscoGAN[2] methods, which are pro-
posed concurrently with CycleGAN, use the same principle,
although they use different loss functions.

These methods transform the entire image. For this rea-
son, artifacts may occur in some parts of the generated image.
For the solution of this problem, Mejjati et al. [8] proposed a
method that determines the parts that need to be transformed
on the image by using the attention mechanism in an unsuper-
vised manner. However, this method does not make any mod-
ification to the parts where the attention map is zero, which
may cause that the translated image might not match the tar-
get domain.

Some IIT methods recognize that there is a common latent
space between the source and the target domain. CoGAN[9]
aims to use this common space by sharing parameters be-
tween the generator and discriminator networks of the source
and target domain. Similarly, the UNIT[10] method converts
between domains by learning features in low-dimensional
shared latent space. The MUNIT[11] method extends the
UNIT method and offers a solution to the multi-modal IIT
problem.

3. PROPOSED METHOD

The purpose of unsupervised IIT is to estimate a mapping
(FS−→T ) without using paired images from the source (S) do-
main to the target (T ) domain. This translation uses XS and
XT image sets, which are sampled independently from the
source and target domains, respectively. The image generated
by translation from the source domain to the target domain
should match the probabilistic distribution of the target do-
main. Mathematically, this expression can be expressed as
follows: FS−→T (XS) ∈ PT . An adversarial loss function is
utilized in order to satisfy matching.

The CycleGAN method, which we use as the baseline
algorithm, learns the inverse translation FT−→S in addition
to the forward translation. It uses these two mappings to
define a loss function to promote cyclic consistency that
can be defined as follows: The image converted from the
source domain to the target domain should be same as the
original image when converted back to the source domain:
FT−→S(FS−→T (XS)) ' XS . This restriction should also be
satisfied in the opposite translation.

In addition to the adversarial and cyclic consistency loss
function, which are already used in the CycleGAN method,
the gradient adjustment loss function proposed in this study
is also described in the following subsections. The horizontal
and vertical gradient estimation of the source and the target
images are calculated by Sobel operators. The gradient ad-
justment loss function is defined in these estimations. The
data-flow diagram of the proposed method from the source to
the target domain is shown in Figure 1. An input image x is
translated by the generator network FS−→T . A copy of the di-
agram has also been used to convert in the opposite direction.

3.1. Adversarial Loss Function

When image translation is performed, the adversarial loss
function is used to match the marginal distribution of the
generated image to the marginal distribution of the target do-
main. In this study, the loss functions proposed in LSGAN[6]
method are used.

Adversarial loss function for generator network LadvF

and adversarial loss function for discriminator network
LadvD are given in 1 and 2 respectively. In these equa-
tions, FS−→T refers to the generator network that translates
from the source domain to the target domain, and DT refers
to the discriminator network for the target domain. These
loss functions also apply to networks that convert from the
target to the source domain. The superscript in the equations
represents the domain of the original image.

LS
advF = Ex∼PS

[(DT (FS−→T (x))− 1)2] (1)



Fig. 1. The data-flow diagram of GAIT

LS
advD =

1

2
Ey∼PT

[(DT (y)− 1)2]

+
1

2
Ex∼PS

[DT (FS−→T (x))
2]

(2)

During the training, generator network parameters are up-
dated to minimize LadvF , and discriminator network param-
eters are updated to minimize LadvD.

3.2. Cyclic Consistency Loss Function

Adversarial learning promotes the generation of images that
resembles the images of the target domain. To obtain more re-
alistic images, in addition to the adversarial loss function, the
cyclic consistency loss function has been defined. This func-
tion encourages the original image to be preserved when the
image is translated back to the source domain after translated
to the target domain. The L1 norm between the reconstructed
image and the original image is defined as the loss function to
achieve this goal. This statement is given mathematically in
the equation 3.

Lcyc = Ex∼PS
[‖x− FT−→S(FS−→T (x))‖1]

+Ey∼PT
[‖y − FS−→T (FT−→S(y))‖1]

(3)

3.3. Gradient Adjustment Loss Function

Adversarial and cyclic consistency loss functions encourage
the artificial neural network to create realistic visuals that re-
semble the images in the target domain. However, it can cause
artifacts in images with a uniform background during transla-
tion. The gradient adjustment loss function has been proposed
in this paper in order to prevent artifacts.

The gradient adjustment loss uses the Sobel filter to es-
timate the image gradients. The Sobel filter consists of two
kernels. When these two kernels, shown with Sh and Sy, are

convolved with images, they calculate derivative approxima-
tions in horizontal and vertical directions, respectively. Sh

and Sy values are shown in equation 4.

Sh =

−1 0 1
−2 0 2
−1 0 1

 , Sv = ST
h (4)

The gradient adjustment loss can be defined as the L2
norm between the Sobel response of the target image and
the adjusted Sobel response of the source images. Sobel loss
function is given in equation 5 where cga corresponds to the
gradient adjustment constant.

Lgrad = Ex∼PS
[‖(Sh ~ x)cga − Sh ~ FS−→T (x)‖22

+ ‖(Sv ~ x)cga − Sv ~ FS−→T (x)‖22]

+Ey∼PT
[‖(Sh ~ y)/cga − Sh ~ FT−→S(y)‖22

+ ‖(Sv ~ y)/cga − Sv ~ FT−→S(y)‖22]

(5)

3.4. Total Loss Function

The total loss functions for the generator and discriminator
network are given in the equation 6. Both the generator and
the discriminator network are trained to minimize the corre-
sponding loss functions.

LF = LS
advF + LT

advF + λcycLcyc + λgradLgrad

LD = LS
advD + LT

advD

(6)

4. IMPLEMENTATION

4.1. Neural Network Architectures

The architectures in the CycleGAN method are used in the
implementation of the proposed method. The neural network



Fig. 2. Samples from Haeckel dataset

proposed by Johnson et al. [12] is used as the generator net-
work. 256 x 256 is preferred as the image resolution. Patch-
GAN network proposed by Isola et al. [7] is used as the dis-
criminator network.

4.2. Training Details

In all experiments, Adam optimizer is used. The λcyc, λgrad
parameters and learning rate are selected as 10, 630 and
0.0001, respectively. All networks are initialized with ran-
dom coefficients.

5. EXPERIMENTS
5.1. Datasets

The proposed method is evaluated on two datasets, namely
Aerial-to-Maps and Jellyfish-to-Haeckel. The jellyfish-to-
Haeckel dataset consists of 2822 jellyfish photographs from
the flicker website and 50 artforms from the book, namely
Art forms in nature by Ernst Haeckel [13]. The flicker
website searched with the keyword Jellyfish. Search results
are listed in order of relevance, and images with download
permission are downloaded. Fifty artforms are collected.
Sample drawings are given in Figure 2.

The aerial-to-maps dataset contains 1096 satellite and
maps image pairs scraped from google maps around New
York City.

5.2. Qualitative Results

Images generated by the proposed method are shown in Fig-
ure 3. The columns in the figure show the original image, Cy-
cleGAN result, SobelGAN result on the Jellyfish-to-Haeckel
dataset, respectively. As seen in the figure, the CycleGAN
method managed to create sharp visuals, but it could not pro-
tect the uniform background information. The GAIT method
proposed here can preserve the background with the help of
the gradient adjustment loss function. Gradient adjustment
constant cga is taken as 1 in this experiments.

5.3. Quantitative Results

The Kernel Inception Distance [14] is used to evaluate the
proposed framework quantitatively. KID calculates the
squared maximum mean discrepancy between the Inception
network [15] features of real and generated images.

Fig. 3. The columns from left to right are original image,
CycleGAN, GAIT (cga = 1) and GAIT (cga = 2) results for
different images

Table 1. Kernel Inception Distance×100 ± std.×100. The
lower value shows a higher similarity. J: Jellyfish, H:Haeckel,
A: Aerial, M: Maps

CycleGan GAIT, cga = 1 GAIT, cga = 2
J2H 8.13±0.43 16.22±0.69 6.03±0.38
H2J 3.48±0.36 7.03±0.57 4.62±0.3
A2M 4.55±0.22 3.79±0.16 3.27±0.15
M2A 1.62±0.14 13.40±0.48 19.37±0.57

The gradient adjustment loss function helps conservation
of the uniform background when cga is taken as 1. However,
KID scores decrease in this configuration, which corresponds
to a decrease in marginal distribution matching performance.
The sketch-like images have strong edges compared to the
natural images. Therefore, it is safe to assume that gradient
should be boosted when an image is translated from natural
to sketch domain, such as jellyfish-to-Haeckel and Aerial-to-
Maps. The KID scores on these datasets are shown in table
1. GAIT outperforms the CycleGAN method in the forward
translation when cga is selected as 2. The inverse translation is
used as an auxiliary operation, and the performance increase
is not aimed. Example images for two dataset with two differ-
ent cga values are shown in Figure 3. The inverse translation
is an auxiliary operation to define the cyclic consistency loss
function.

6. CONCLUSION

Current unsupervised IIT methods can create artifacts in the
uniform background of the source image where the source
and target domains have different background distributions.



The gradient of the original image is preserved during the
translation, and the defects in the uniform background are
eliminated with the help of the gradient adjustment loss
function. In addition, the distribution matching capability
is enhanced by the help of the gradient adjustment constant
when the gradient is boosted. The results are presented on
the Jellyfish-to-Haeckel and Aerial-to-Maps datasets, and the
effectiveness of the proposed method is demonstrated with
qualitative and quantitative results. The results are com-
pared with the CycleGAN method, and a performance gain is
observed.
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