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PUNet: Temporal Action Proposal Generation with
Positive Unlabeled Learning using Key Frame
Annotations

Noor ul Sehr Zia
Delft University of Technology
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Abstract—A good action proposal method should generate
proposals with high recall and high temporal overlap with
groundtruth. The quality of the proposals relies on the la-
beled data available during training. Obtaining labeled data for
untrimmed videos is a time consuming, expensive and error-prone
task. The labels obtained are also subjective and the temporal
bounds are inconsistent between different human annotators. We
propose using a single key frame label for each action instance
instead of the start and end point labels to generate temporal
proposals. This reduces the number of labeled action frames
in the dataset leading to class imbalance. To overcome this, we
replace the learning setting with a PU-learning setup.

We demonstrate that using key frames as labels give high
quality proposals and yield results comparable to using full
annotations while being faster to annotate as the exact temporal
bounds no longer need to be annotated. We evaluate our
method on THUMOS’14 and ActivityNet v1.2 dataset. Further
experiments indicate that by combining existing action classifier
on our proposals, our method is able to achieve high mean
average precision (mAP) for action localization.

I. INTRODUCTION

The amount of video data available is increasing exponen-
tially, raising the need for reliable video analysis methods.
Most real world videos are untrimmed in nature and contain
multiple action sequences along with background making it
necessary to have an efficient temporal action localization
algorithm. Temporal action localization aims to identify the
frames containing actions for each action instance and the
action classes.

Current action localization methods [1]-[3] extend from
object detection. Object proposals have significantly improved
the object detection methods and have contributed to large
scale detection in terms of efficiency and high detection
rates [4], [5]. The current object detection pipelines are divided
into two steps: proposal generation and object classification.
Inspired from this, recent action detection methods first gen-
erate proposals and then perform classification [6], [7]. For
untrimmed video data, the goal is to have a fast localization
and using proposal methods can speed up the localization
process. These proposal methods are fully supervised and
require action temporal bounds to generate proposals.

The performance of action proposal generation networks
is limited by the annotated data available. In untrimmed
datasets, each action instance is labeled with a start and end
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Fig. 1. Our proposed method. A single frame is labeled for each action
instance instead of start and end points of the action duration. The detected
results are shown for two classes of THUMOS’ 14 dataset. Using a single
frame, the PU learning network is able to detect the action boundaries with
low error.

timestamp of the action and each video can have multiple
action instances which may occur at same timestamp [8].
Obtaining these labels is time consuming and expensive.
Moreover, the labeling is subjective and error prone [9] due to
different understanding of action duration, thus affecting the
results of the model trained using these labels [10]. Recent
works in action recognition have shown that the performance
improves by using most discriminative portions of the video
for training [11]. Similarly, work has been done to optimize
the segment length and recognize human actions with less
number of frames [12], [13]. Using a single timestamp instead
of start and end time for action recognition has been shown to
be a reasonable compromise between recognition performance
and annotation effort [14]. A single point annotation is also
significantly faster to obtain [15]. We use weakly supervised
setup for action localization where instead of labeling start and
end of the segment, we propose labeling a single action frame
as “key frame” inside an action’s temporal window. We choose
the midpoint of the action instance as our key frame label.
Instead of learning a sampling distribution [14] our method
uses Positive Unlabeled (PU) learning to detect action frames.

We label one frame belonging to the action instance as
our key frame. The remaining frames are now a combination
of background and unlabeled action frames, referred together



as ‘unlabeled data’. If we consider the unlabeled data as
negative class, the problem becomes imbalanced due to the
high ratio of unlabeled data to positive data and cannot be
solved effectively using positive-negative learning. Therefore,
the problem is translated to a PU learning [16] setting where
the true positives are iteratively removed from the unlabeled
data. In the beginning each unlabeled sample can be either:

¢ a background feature,
o a part of the action duration that is left unlabeled.

The main contributions of our work are:

1) We propose Positive Unlabeled Network (PUNet) for
action proposal generation using a single labeled frame
per action instance. We show that using key frame
instead of start and end point gives similar performance
when compared to fully supervised methods.

2) We demonstrate that our weakly supervised setting
which utilizes less labels is able to achieve similar results
to state of the art fully supervised settings.

3) Our method generalizes well and is able to generate
proposals for unseen action classes.

ITI. RELATED WORK
A. Temporal Action Localization

Temporal action localization determines where an action
takes place in a video. It outputs the action boundaries and
class. Recently, proposal based methods are being utilized
for fully supervised action localization [1], [17]-[20]. Earlier
works for proposal generation use sliding windows directly
as proposals [21], [22]. But sliding windows lead to huge
computational overhead for recognition due to redundant com-
putations as overlapping frames are processed more than once.
To avoid window overlap, recent techniques such as SST [23]
use a GRU-based sequence encoder that is able to generate
proposals in a single stream without dividing into overlapping
windows. TAG [18] uses watershed algorithm to generate
flexible proposals from actionness probabilities. BSN [17]
determines local information as starting, ending and actionness
probabilities of temporal locations and combines them with
high probability locations, and evaluates proposal level fea-
tures to generate proposals in “local to global” fashion. Most
recent methods use matching networks to retrieve temporal
proposals [24]. In our approach, we reduce the labels needed
for proposal generation by only using a key frame label for
training.

Recently weakly supervised techniques have been proposed
for action localization that only utilize the video-level action
labels to learn the temporal bounds and action labels from
untrimmed videos. UntrimmedNets [25] use a hard and soft se-
lection scheme to localize segments from classification scores.
Hide and Seek approach [26] randomly hides frames in a
video to make the network focus on most discriminative parts.
In addition to these, BasNet [27] and BUME [28] explicitly
model the background class as a separate network branch.
These methods achieve good results at the expense of complex
network architectures requiring large number of parameters

Positive data Negative data Unlabeled data === Decision boundary

Supervised learning Semi- supervised learning Positive-Unlabeled learning

Fig. 2. Different types of learning settings. We use the positive unlabeled
setting where few positive samples are labeled and remaining samples are
used to extract reliable negatives.

and longer training time. We try to find a middle ground by
using key frame labels with a one layer neural network in a
PU learning setting.

B. Positive Unlabeled Learning

Data annotation is an expensive and laborious task. To
reduce annotation effort, in recent years there has been an
increased interest in developing algorithms that do not require
fully annotated data. The most common learning set up is
supervised learning where the algorithm has labeled positive
and negative samples. Semi supervised learning relaxes the
requirement of labeling and the training data consists of some
positive and negative labeled samples and rest of the data
is unlabeled. An extension of semi supervised learning is
PU learning where only few positive labeled samples are
required and remaining data is considered to be unlabeled [16].
The unlabeled data can consist of both positive and negative
samples. We illustrate these differences in Figure 2. The
original method of PU learning by Liu et al. [29], [30] isolates
a set of reliable negatives from the unknown data and increases
the set until no new negatives are identified. Fusilier et al. [31]
propose a variant of the original method that isolates a set of
reliable negatives from unknown but iteratively refines the set.
In this paper, we show that PU learning can be used to detect
action frames from limited number of labeled groundtruth
frames during training.

III. METHOD
A. Problem definition

An untrimmed video sequence can be denoted as X =
{x,}I_, with T frames where z,, is the n-th frame in the
video. In this work, the annotations of untrimmed videos can
be defined as ¥, = {p, = (tm,n)}gil where t,, , is the
midpoint of the action instance n which we refer to as our
key frame and IV, is the total number of action instances. For
proposal generation, the class labels are not considered and
only the key frames are used.

B. Input

We use I3D pretrained on Kinetics dataset to extract RGB
and optical flow (OF) features from a given video. The feature
representations from RGB and OF are concatenated along the
y — axis to obtain (T * 2D) features for a video of duration
T. For each video, we use a frame from the action region
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Fig. 3. Overview of our proposed approach. (a) An I3D network is used for encoding features and one point is labeled for each action instance. We divide
the input into non-overlapping windows to be used for training. (b) The model is trained using PU learning technique at different scales to extract proposals.

The proposals are classified using state of the art action classifier [25].

(b) Keypoints

Fig. 4. For a given set of action instances, the key frame for that instance is the
midpoint of the duration of the action. One key frame is selected irrespective
of the duration of action instance.

as a key frame label. During training, only this single frame
location is used as a label with a weakly-supervised manner.
The key frames corresponding to groundtruth annotations can
be seen in Figure 4. Regardless of the action duration, only a
single key frame is used as a label.

Note that, each input feature corresponds to a binary label
in terms of the key frame label and none of the action class
labels are used for training or evaluation.

C. Multi-scale window generation

From untrimmed videos, we extract temporal windows of
varied lengths 16, 32, 48, 64 and 80 frames with no overlap.
Window label is positive if a key frame is present within that
window duration.

D. PU learning

The modified PU-learning algorithm [31] is used to train
the binary classifier. The algorithm finds negative samples
that are most dissimilar from the positive samples by refining

the ‘reliable negatives’. Positive versus Unlabeled classifier is
trained and tested on the unlabeled training set. The predicted
negative samples with a high confidence score are considered
to be reliable negatives. The remaining unlabeled samples are
removed from training. The size of the reliable negatives is
reduced iteratively by training a classifier using positive and
reliable negative data and evaluating on reliable negative data
points. Reliable negatives classified as positives are removed
from the training set and this step is repeated until no positive
classes are identified or the size of reliable negatives is less
than positive samples. This reduces the size of the negative
samples and overcomes class imbalance.

E. Proposal generation and classification

The proposal generation module uses PU classifier to gen-
erate candidate proposals for each window scale. The results
from different window scales are combined to get the final
proposals. We evaluate our proposals with a detection by
classifying proposals approach and use state of the art action
classifier [25]. The overview of PUNet can be seen in Figure
3.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate PUNet on the widely used
THUMOS 14 [32] and ActivityNet 1.2 [33] dataset. The
THUMOS’ 14 dataset consists of temporal annotations for 20



TABLE I
Comparison of our method with other state of the art proposal generation
methods on THUMOS’ 14 dataset in terms of AR@AN. Our method
outperforms all fully supervised methods at AR@50 and AR@100 except

BSN.
Supervision | Feature [ Method [ @50 [ @100
Full C3D DAPs [34] 13.56 | 23.83
- Sparse-prop [35] | 13.42 | 21.44
C3D SCNN-prop [36] | 17.22 | 26.17
C3D SST [23] 19.90 | 28.36
C3D TURN ([37] 19.63 | 27.96
flow TURN [37] 21.86 | 31.89
C3D BSN [17] 29.58 | 37.38
2-stream | BSN [17] 3541 | 46.06
Weak - Key frames | 13D PUNet 33.34 | 41.10
TABLE II

Comparison of our method with other state of the art proposal generation
methods on ActivityNet v1.2 dataset in terms of AR@AN. Our method
PUNet gives a higher recall while needing less number of proposals.

Supervision | Feature [ Method | # proposals [ AR@100

Full C3D DAP [34] | 100 12.1
STIP TAP [35] | 90 14.9
Weak 13D PUNet 20 20.3

classes comprising of 200 validation and 213 test videos.
The validation videos are used for training. On average each
video has 15 action instances. ActivityNet 1.2 consists of 100
action classes and 4819 training, 2383 validation and 2480
test videos. We use the validation videos for testing as the
groundtruth for test videos are withheld.

2) Evaluation metric: PU-learning method is evaluated
using Fl-score. For temporal action proposal generation task,
Average Recall (AR) calculated at different IoU thresholds
is used for evaluation. We also calculate AR with average
number of proposals (AR@AN) to determine relation between
recall and number of proposals. For temporal action detection,
mean average precision (mAP) is reported.

3) Implementation details: We use 13D pre-trained on Ki-
netics as our feature extractor. We use segments of 16 frames
as input to our I3D network. The rgb and opti flow features are
concatenated and the dimension of input feature = is 2048. We
do not fine tune the feature extractor. For the classifier, we use
a single layer Multi Layer Perceptron (MLP) with 100 hidden
units. The network is trained using adam optimizer and 10~4
learning rate. To extract the initial set of reliable negatives, the
predicted negatives are thresholded based on their confidence
score. The threshold is set as 0.99.

B. Results

A good proposal generation method should generate high
recall with less number of proposals. We determine our
methods ability to do this by plotting the average recall against
the average number of proposals for THUMOS’ 14 dataset
(Figure 5a). PUNet outperforms most state of the art methods
which use full supervision. We list the comparative results
for THUMOS’ 14 and Activitynet v1.2 at AN = 50,100 in
Table I and II. We also evaluate the quality of our generated

TABLE III
Comparison of our method with the state of the art methods on the
THUMOS’ 14 dataset. Average mAP is reported. Weak * indicate use of
additional information in weakly supervised approach. PUNet outperforms
most weakly supervised action localization methods and some fully
supervised methods while utilizing less annotations.

Supervision | Feature | Method [ AVG mAP

Full - S-CNN [36] 19.9
- CDC [38] 22.8
- BSN [17] 36.8

Weak 13D STPN [39] 18.5
UNT AutoLoc [40] 21.0
13D Liu et al. [41] | 23.7
13D BaS-Net [27] 27.3
13D RPN [42] 27.6
13D BUME [28] 30.0

Weak * 13D PUNet 26.1

TABLE IV

Comparison on ActivityNet 1.2 with the current state of the art methods.The
average mAP is reported. The results for I3D feature extractor are reported
for techniques utilizing feature extraction. PUNet has comparable
performance to fully supervised method and outperforms most weakly
supervised methods for action localization.

Supervision | Method AVG mAP

Full S-CNN [36] 26.6

Weak UntrimmedNets [25] | 3.6
AutoLoc [40] 16.0
Liu et al. [41] 22.4
W-TALC [43] 18.0
BaS-Net [27] 24.3
RPN [42] 23.3
BUME [28] 25.4

Weak * PUNet 23.7

proposals by comparing the recall at different tloU thresholds
(Figure 5b). Our results have significantly higher recall at 100
proposals for tloU 0.1 to 0.5. The results for action detection
indicate that PUNet performs better than few fully and weakly
supervised methods. These results are presented in Table III
and IV.

C. Ablation studies

We conduct some controlled experiments to test the contri-
bution of each design decision.

1) Key frame position: We check different key frame posi-
tions as our network input. We test our network performance
with midpoint, start, end and random point in the temporal
boundary of action as our key frame label. We also check
using multiple random points within the temporal window as
our key frames. The results indicate random point gives 12.9%
and 29% higher and midpoint gives 15.63% and 31.25% higher
performance than start and end points respectively (Figure 6).
Using start and end points as network input drastically reduce
the performance. This is because the labels may not contain the
precise temporal bounds and the exact temporal extent of an
action is subjective [9]. The probability of a middle or random
point inside the temporal duration of belonging to the true
annotation window is higher than the start and end points, as
the error margin is high on the endpoints. We also tested with
three random points within the action duration as our labels,
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TABLE V
Ablation study of our method with different classifier and input type.
Fl-score is used to compare the settings. The results for SVM and MLP as
base classifier and RGB, flow and RGB + flow as network input are
compared. MLP as classifier and RGB+flow input give superior

performance.

Setting F1-score
Classifier SVM 0.64

MLP 0.70
Input type | RGB 0.66

Flow 0.67

RGB + Flow | 0.70

but did not notice any significant performance difference when
compared with using a single random point.

2) Network: For the base classifier for PU-learning setup,
two different classifiers are tested. We use a linear Support
Vector Machine (SVM) and a single layer Multi Layer Per-
ceptron (MLP) as our classifiers. The MLP network has higher
F1-score on the test dataset (Table V).

3) Input data type: Most existing action analysis methods
use RGB and optical flow as network input [17], [27], [28].

Recall@100 proposals
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Fig. 5. Comparison of our weakly supervised proposal generation method with the state of the art fully supervised methods on THUMOS’ 14 dataset. (a)
PUNet is able to achieve high recall performance with few number of proposals. (b) Recall with 100 proposals at different tloU thresholds show PUNet has
high recall compared to all fully supervised methods when tloU < 0.5. At higher tloUs, PUNet outperforms all fully supervised methods except BSN.
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We test PUNet with RGB, optical flow and concatenated RGB
and optical flow feature inputs. Table V shows the results of
the three feature representations in terms of background and
foreground classification. The results of proposal quality in
terms of recall at tloU are shown in Figure 7.

4) Input features: We train PUNet with features extracted
from UntrimmedNets [25] and 13D [44]. Figure 8 shows the
proposal performance as recall vs tloU curve. The I3D features
outperform UntrimmedNets features. To notice that PUNet
with untrimmed features outperforms most fully supervised
techniques shown in Figure 5b. The performance of PUNet
is not dependent on feature extractor, and the improvements
observed are due to the learning technique.

5) Window size: Our preliminary results on window sizes
for proposal generation show that combining the results from
multiple scales gives far superior performance compared to
single scale. The results at different scales are shown in
Figure 9.

D. Required annotations per video

The videos in THUMOS’ 14 dataset have 15 action instances
per video on average. The actions are not distributed evenly
among videos and the dataset has a standard deviation of
24 with respect to number of action instances. The action
instances per video range from 1 to 128 (Figure 10). The
total labeled action instances in the training set if we fix the
maximum action instances per video are shown in Figure 11.
We check whether annotations for all instances are needed to
get an effective action proposal network. We compare the F1-
score for maximum annotations per video ranging from 1 to
128. After a maximum limit of 6 annotations per video, the
F1-score has low variance (Figure 11). The network is able to
identify the unlabeled key frames effectively. We believe that
not all annotations are necessary to achieve good performance.

We train our network, PUNet, with maximum of 6 anno-
tations per video and report results in Table VI. To validate
the generalizability of limiting annotations, we train the state
of the art weakly supervised action localization networks with

o
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Fig. 10. THUMOS’ 14 dataset distribution. The number of annotations per
video vary drastically ranging from one action instance to 128. Limiting the
maximum number of annotations per video reduces the annotations required
significantly.
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classifier performance. After 6 annotations per video, the performance does
not change much and the standard deviation reduces. The mean value of F1-
score from 1-128 annotations is 0.69 =+ + 0.05, and mean F1-score from 6-128
annotaions is 0.70 £ 0.008. Our method does not need all the annotations to
perform well.

limited annotations. BaSNet [27] and BUME [28] are trained
with the reduced video size and the results show a 0.9% and
2.5% reduction in mAP, while only utilizing one third action
instances. The results are shown in Table VII.

TABLE VI
Effect of using limited annotations per segment and limiting the segment
length on proposal generation. We set the maximum annotations per video
to 6. The average recall is reported for 50 and 100 proposals. The action
instances are reduced by one-third while giving comparable average recall.

Input [ Action instances | AR@50 [ AR@100

Partial 946 31.27 36.84
Whole 3007 33.34 41.10




TABLE VII
Effect of using limited annotations per segment and limiting the segment
length on action localization for THUMOS’ 14 dataset. We set the maximum
annotations per video to 6. The action instances needed reduce by one-third
while the performance only decreases by 0.9% and 2.5% for BaSNet and
BUME.

Input [ Action instances | Method | mAP

Fartial 946 BaSNet 26.1
BUME 28.2
Whole 3007 BaSNet 27.0
BUME 30.7

TABLE VIII

Generalization evaluation of PUNet on THUMOS’ 14 dataset. Action classes
are removed from the training set and the resulting model is evaluated on
the full test set (seen + unseen classes) containing 20 classes.

# classes in training set AR@50 [ AR@100

17 32.7 38.3
18 33.1 39.7
19 332 40.8
20 33.3 41.1

E. Generalizability of proposals

We evaluate the generalization ability of PUNet by testing
its performance on unseen action classes. We randomly leave
one to three classes from our training set and test on our test
set containing all 20 classes of THUMOS’ 14 data. As shown
in table VIII, there is only a slight performance decrease when
testing on unseen classes and the method is able to generate
high quality proposals on unseen classes.

F. Qualitative analysis

The qualitative analysis of our approach for key frame
annotation is shown in Figure 1. We chose two actions
Baseball Pitch and CleanandJerk from THUMOS’14 to
evaluate our method. The window size is kept to 32 frames.
The GT denotes groundtruth segments and the labels denote
the key frame inputs to our network. Without any postpro-
cessing, our proposal evaluation model is able to capture the
full extent of the temporal duration and not just the key
frames. The proposals generated for action Cricket Bowling
and CleanandJerk are shown in Figure ??.

V. CONCLUSION

In this work, we investigate using key frame level supervi-
sion for training temporal action proposal model. We propose a
method which requires labeling less annotations per video and
PU-learning. We test our approach on two untrimmed datasets.
Compared to fully supervised methods, our approach is able
generate proposals with high recall and high temporal overlap.
Experimental evaluation on THUMOS’14 and ActivityNet
v1.2 shows that: (i) Using a key frame annotation gives compa-
rable performance to using fully supervised annotation which
use start and end annotations, (ii) All action instances from
one video are not necessary to achieve good detection results,
(>iii) Our results are comparable to the state of the art methods.
We conclude that annotation effort can be significantly reduced

by labeling key frames and for long untrimmed videos, only
limited number of action instances need to be labeled and
trained to achieve similar results.
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Datasets

Action recognition methods rely on trimmed videos where the video only consists of the relevant action
frames. Most real world videos are unconstrained and consist of multiple action instances, referred to
as untrimmed videos. Untrimmed videos are longer, unconstrained and contain noise and background
frames. This poses a need to localize the frames which contain the action and classify them. Several
datasets have been collected containing untrimmed videos to help in action localization research. To
ensure that the model generalizes well and is able to learn from different types of data, it is important to
test on more than one dataset. In this work, two untrimmed datasets have been used: THUMOS’14 [4]
and ActivityNet 1.2 [1].

2.1. Dataset selection

THUMOS'14 dataset consists of 200 validation and 210 test videos. Each video consists of multiple
action instances with ~15 action instances per video on average with a standard deviation of 24. The
videos can contain action from multiple classes.

ActivityNet 1.2 dataset consists of 100 action classes with 4819 training and 2383 validation videos,
containing ~1.5 action instances per video. The videos are shorter in length compared to THUMOS’14
dataset while containing bigger range of action classes. Using these two datasets for evaluation allows
us to determine:

+ THUMOS’14: The ability of the model to detect actions in long videos consisting of multiple action
instances.

+ ActivityNet 1.2: The ability of model to detect actions belonging to many classes

The characteristics of both datasets have been summarized in Table 2.1.

Table 2.1: Statistics of THUMOS’14 and ActivityNet 1.2 dataset. Both datasets contain multiple actions per video. ActivityNet
has more number of classes while THUMOS’14 dataset contains more action instances per video.

. . Average actions
Dataset Set | No. of classes | No. of videos | No. of actions per video
THUMOS’14 Train 20 200 3007 15.03
Test 20 210 3307 15.74
ActivityNet 1.2 | Train 100 4819 7151 1.48
Test 100 2383 3583 1.50
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Data preprocessing

In key frame based annotation, one frame is labeled for each action instance. Existing data annotations
are converted into key frame level annotations. This section discusses the annotation process and the
preprocessing of input data.

3.1. Annotation

For a given video, if an action is from t; to t,, a single frame is labeled during this instance duration
which is referred to as key frame. Key frame position is tested on THUMOS’14 by labeling start, end,
random and midpoint of the duration as key frame. Midpoint and random point give similar performance
for foreground and background classification (Table 3.1). Midpoint is picked as key frame for further
experiments.

Multiple window scales are used for experimentation. For a given window scale, the video is divided
into non overlapping chunks. If the key frame is present in the frames located within the window, the
window is assigned a positive label. The rest of the windows are unlabeled. The dataset statistics for
each window scale are presented in Table 3.2. For the test set, all frames in the action duration are
assigned as positive.

3.2. Feature extraction

13D [2] pretrained on Kinetics dataset is used as a feature extractor for the input videos. The videos are
formatted to 25 FPS. The frames and optical flows are extracted at 25 FPS. The rgb and optical flow
inputs are given to the 13D network separately. Features are extracted from Mixed_5c layers. Feature
is extracted for every chunk of 16 frames. The dimension of feature vector is 1024. The RGB and flow
features are concatenated to get a 2048 dimension feature vector.

3.2.1. Two-Stream Inflated 3D ConvNet (I13D)

I3D [2] combines the benefits of 3D convnets [7] and two stream networks [6]. Existing 2D image
classification models are converted into 3D convnet by inflating all the filters and pooling kernels in a 2D
architecture with an additional temporal dimension (Figure 3.1). This allows converting 2D classification
models into 3D by training multiple frames. The pretrained weights from 2D networks can also be used

Table 3.1: Results of using different frames as the key frame. Middle frame and random frame give the best results.

Key frame type | F1-score
Midpoint 0.64
Random point 0.62
3 Random points 0.61
Start point 0.54
End point 0.44

12



3.2. Feature extraction

13

Table 3.2: Number of positive and unlabeled samples with different window scales for THUMOS’14 dataset.

Window scale . .
(frames) Seconds | Positive samples | Unlabeled samples | Ratio
16 1 2848 62143 1:22
32 2 2779 29668 1. 11
48 3 2717 18873 1.7
64 4 2657 13519 1:5
80 5 2583 10337 1:4
Inflated Inception-V1 Inception Module (Inc.)
Rec. Field: Rec. Field:
711,11 11,27,27

TXTXT

Video Conv
stride 2
Rec. Field:
23,75,75

Rec. Field:
99,539,539

Rec. Field:
59,219,219

1x1x1
Conv

Predictions

1x1x1

Conv

Figure 3.1: The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right) [2]

by repeating the weights of 2D filters N times in the time dimension. The inflated filters are N x N x N

dimension instead of N x N.



PU learning

In an ideal learning setting, the training data is fully labeled. However, obtaining labeled data is an
expensive and time consuming task. Positive Unlabeled (PU) learning allows the model to learn from
data by explicitly using the unlabeled data in its training process. In PU learning setting, the model has
access to few positively labeled examples and the rest of the data is unlabeled. The unlabeled data
can consist of both positives and negatives.

PU learning approach used in this thesis is based on [3]. The training data consists of video frames
and each frame is either positive or unlabeled. Instead of labeling the full duration of an action, a single
frame is labeled inside the window of the action instance. This approach has the following advantages:

1. Reduces the labeling effort
2. Reduces the subjective bias of labeling

3. The start and end points are more prone to error while labeling. By using a point with-in the action
window, the probability of this error is reduced.

4.1. PU learning algorithm

The modified PU learning algorithm proposed by Fusilier et al. [3] is used. A classifier in trained by
considering all unlabeled data as negatives. The trained classifier is then used to predict the unlabeled
data. The predicted negatives with a confidence higher than 6 are chosen as reliable negatives (RN).
RN set is refined iteratively by training P vs RN until no samples in the RN set are classified as positives.
The steps are listed in Algorithm 1.

Algorithm 1: PU learning algorithm

Result: Binary Classifier (;
i1,
C; « Classifier(P,U)
Up « (V)
Q; < threshold_negatives(UF, 6)
RN; < ©Q;
Qo < ©Q;
while | Q; I<I Q;_; | and | P I<| RN; | do
i<i+1
C; « Classifier(P,RN;_4)
RN}  Ci(RN;_y)
Q; < negatives(RN})
RN; < Q;
end

14



4.2. Qualitative results of PU learning 15

4.2. Qualitative results of PU learning

Pu learning method helps in fitting the decision boundary in imbalanced class data. For visualization
purposes, the feature dimension is reduced to two using PCA. Randomly chosen samples from training
and test set are plotted to show the effect on decision boundary after training a classifier using PU
learning strategy. The training process uses all the data points.

Figure 4.1a shows the positive and unlabeled data samples for THUMOS’14 dataset. After refining
the unlabeled set using PU learning, positive and reliable negatives are shown in Figure 4.1b. The
effect on decision boundary after training classifier on data obtained before and after PU learning is
shown in Figure 4.2 and 4.3 for training and testing data respectively.

Training data peints before PU learning Training data points after PU learning
15
15 e Negative . e MNegative ’ .

e Positive e Positive

10

Feature-2
Feature-2

-0 s 0 5 10 5 -10 = 0 5 1 5
Feature-1 Feature-1
(a) Data points without PU learning (b) Data points after applying PU learning

Figure 4.1: Before PU learning (Figure a), the dataset is imbalanced and consists of less positive samples compared to unlabeled

samples. After applying PU learning algorithm, the unlabeled set reduces in size and is replaced by reliable negatives (Figure
b).

Training boundary Training boundary

15 o negative
s positive

o negative
s positive

Feature-2
Feature-2

Feature-1 Feature-1

(a) No PU - training (b) PU - training

Figure 4.2: 200 samples are shown from the training set. (a) The decision boundary without PU learning does not fit the data
points. (b) After PU learning, the decision boundary does a better job at separating negatives and positives,
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Testing boundary

Feature 2

Testing boundary

s negative
e positive

Feature-2

-

Feature-1

(a) No PU - test

®  negative
o positive

Feature-1

(b) PU test

Figure 4.3: 500 samples are shown from the test set. (a) The decision boundary without PU learning does not fit the data points.
(b) After PU learning, the decision boundary does a better job at separating negatives and positives,

4.3. Quantitative results of PU learning

The f1-score of the PU learning network shown in the previous section is reported for the test set in
Table 4.1. Due to low dimension and class imbalance, these numbers are lower for dimension 2 than for
the full dimension. However, the performance improvement due to the proposed method is noticeable.
The results for dimension 2, correspond to the decision boundary shown in figure 4.3b.

Table 4.1: The performance of network before and after refining the dataset using PU learning. The results are reported for
feature dimensions 2 and 2048. PU learning significantly improves the performance.

Dimension Set up F1 score
2 Baseline (No PU) | 0.0004
PU learning 0.61
2048 Baseline (No PU) | 0.14
PU learning 0.68




Alternative attemps

5.1. Siamese network

One of the post processing method proposed in this work uses a Siamese Network. A pairwise learning
approach is used to compute similarity between given pairs of input frames. The input pairs are selected
as a triplet comprising of an anchor frame and postive and negative samples for that anchor frame. The
dissimilarity should be high between the anchor frame and negative sample. Similarly, the dissimilarity
should be low between anchor frame and positive sample. This phenomenon is implemented through
the triplet loss:

L =max(d(a,p) — d(a,n) + margin, 0)

where d is the distance function, a is the anchor point, n is negative point and p is positive point. The
loss pushes d(a,p) to 0 and d(a,n) to be greater than d(a, p) + margin.

5.1.1. Boundary refinement

After training the network with key frames labels, during inference we obtain action frames on the
testing video. The network is able to detect all action frames, not just the key frames. To localize the
temporal segment of an action, we use matching algorithms to refine the boundaries of the segment.
Siamese network is used with triplet loss. For a given anchor, frames that are within a small window of
the anchor frame are assigned as positive input. The negative inputs are selected by either randomly
selecting a frame from outside the window or choosing a random frame from a different video. Once
Siamese network is trained, similarity is calculated between an action frame and frames on its either
sides, if the similarity is greater than a threshold, those frames are added to the action segment. The
method with siamese network based boundary refinement is shown is Figure 5.1.

Background
refinement

| | Similarity | kepos
" _p Feature } -
optical flow extractor :

: un
i ‘ O Positve : :
' ' Frame H H Output
! I ' : Key frame label O Unlabeled classification | Embedding |

Te—

Repeat for each key

! Groundtruth frame

Figure 5.1: Overview of our proposed approach with Siamese matching. One frame is labeled for each action instance. The
model is trained using PU learning technique. For each detected action frame, the boundaries are compared with adjacent
background frames using a Siamese network. Similar frames are merged with the action segment to get the final result.
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GT

Keypoint
labels

Output

Output
(Matching)

(a) Throw Disc

GT

Keypoint
labels

Output

Output
(Matching)

(b) Pole Vault

Figure 5.2: Detected segments on THUMOS’14 dataset with Background refinement. GT indicates the groundtruth, keypoint
labels are our network input. The last row represents the results after background refinement. The refinement step helps in
combining segments from same action instance and improves the results for longer segments.

5.1.2. Qualitative results

The additional matching is able to refine the detected temporal durations. For longer durations, network
has a lower overlap with groundtruth. By using a siamese network to find similar frames, the localization
performance of the network improves (Figure 5.2). The results are shown on ThrowDisc and PoleV ault
actions of THUMOS’14 dataset.

5.1.3. Discussion

The refinement approach while giving good results, requires some heuristics and knowledge about
the dataset to select the pairs in Siamese network. It is also more computationally expensive. The
performance after using multiple window scales and siamese network for matching is similar. But due
to the less computation required for the multiple window scales set up, the siamese matching was
removed as a post processing step.



Discussion

In this work, an alternative approach for labeling the temporal annotations of the action in videos has
been proposed. The temporal boundaries obtained using start and end points are subjective and prone
to error [5]. The labeling process is also taxing and requires watching the video multiple times to
detect precise boundaries [8]. Whereas labeling a single frame within the action instance is less time
consuming and taxing.

6.1. Recommendations

6.1.1. Datasets

The results have been reported on two popular video action datasets. The thesis work does not test the
performance of the network on egocentric datasets. The results are reported for ActivityNet 1.2 and not
the latest version ActivityNet 1.3". This decision was made as ActivityNet 1.3 has twice the amount of
data as its predecessor version, while both have the same complexity of videos (length, average action
instances). To optimize the time and resources available, a decision was made to use ActivityNet 1.2.
For future work, the work can be tested on egocentric datasets and ActivityNet 1.3.

6.1.2. Multiclass set up

The PU learning problem is treated as a binary class problem. The proposals are classified using a
preexisting classier. The preliminary experiments using multi class PU learning gave good accuracy
results 73% overall but the detection results were poor. On further inspection, it was noticed that classes
belonging to shorter videos with less key frame annotations available are the ones that perform poorly.
This is an area that can be experimented with in more detail during future work by limiting the maximum
annotations for each class to avoid this class imbalance.

"http://activity-net.org/index.html
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