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Abstract
Human perception is routinely assessing the similarity bet-
ween images, both for decision making and creative thin-
king. But the underlying cognitive process is not really well
understood yet, hence difficult to be mimicked by computer
vision systems. State-of-the-art approaches using deep ar-
chitectures are often based on the comparison of images
described as feature vectors learned for image categori-
zation task. As a consequence, such features are powerful
to compare semantically related images but not really effi-
cient to compare images visually similar but semantically
unrelated. Inspired by previous works on neural features
adaptation to psycho-cognitive representations, we focus
here on the specific task of learning visual image similari-
ties when analogy matters. We propose to compare different
supervised, semi-supervised and self-supervised networks,
pre-trained on distinct scales and contents datasets (such
as ImageNet-21k, ImageNet-1K or VGGFace2) to conclude
which model may be the best to approximate the visual cor-
tex and learn only an adaptation function corresponding
to the approximation of the the primate IT cortex through
the metric learning framework. Our experiments conduc-
ted on the Totally Looks Like image dataset highlight the
interest of our method, by increasing the retrieval scores
of the best model @1 by 2.25×. This research work was
recently accepted for publication at the ICIP 2021 inter-
national conference [1]. In this new article, we expand on
this previous work by using and comparing new pre-trained
feature extractors on other datasets.

Keywords
Visual Similarity, Features Adaptation, Image Retrieval,
Analogies

1 Motivation
Analogies are constantly employed by humans to find
connections / similarities between images, when learning
concepts or for creative purposes. Our perception being ex-
tremely complex to model, it remains difficult to imitate
by machines. However, capturing image similarities is a
cornerstone in various computer vision tasks, such as re-
trieval, classification, spotting, etc. This task is challenging
since an image has many more interpretations than its tex-

tual description and the sought similarity may depend on a
hidden intention.
State-of-the-art approaches often rely on the comparison of
images described as vectors of features learned via convo-
lutional neural networks (CNNs) with objectives close to
classification task. Since such features are generally lear-
ned for image categorization, they are biased by the se-
mantics of the decision process of the classifiers. In this
article, we focus on the task of learning image visual simi-
larities and we involve this in an image retrieval context.
Inspired by previous works on neural features adaptation
to psycho-cognitive representations, we propose a way to
learn a perceptual similarity function between images that
share visual connections but that are semantically unrela-
ted. To our knowledge, we are among the first to propose
a methodology to face this issue of understanding the un-
derlying psycho-visual process of matching images of dif-
ferent natures.

2 Background
In human perception, the notion of similarity between
concepts or even images has been studied for a while and
remains extremely difficult to define [2, 3, 4, 5, 6]. Du-
ring the last decade, scientists from cognitive and com-
puter sciences started to analyze the differences between
human and machine perception and to investigate on how
modern neural architectures could help to capture human
judgments of similarity ; such a similarity can be either gui-
ded by general concepts [7, 8, 9] or performed by strictly
visual correspondences [10, 11, 12, 13, 14]. As already sta-
ted by [15], strategies based on visual stimuli yield good re-
sults with very simple images (with well segmented back-
ground) [11] or when focusing on a narrow class [7, 12, 16]
(such as only faces, animals, arts).
The Totally Looks Like image dataset (denoted as TLL) is
an interesting example of this research area [15]. TLL is
composed of 6k+ image pairs resulting from human pro-
positions, where similarity between images is not based on
semantic categorization (as this is the case in most classi-
cal image retrieval datasets) but only based on visual clues
derived from the image contents. The images belong to dif-
ferent domains such as photography, cartoons, sketches, lo-
gos, etc. making the task even harder but more represen-
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tative of human ability to make connections between se-
mantically unrelated objects (some illustrative samples are
provided in Fig. 1). From this dataset, one can note that the
process of human visual similarity mixes multiple different
levels of analysis ranging from color, texture, to shape,
layout, etc. in which context, cultural aspect and possibly
humor and irony can play an important role.

Ones could argue that similarity is a too subjective and an
ill-posed problem. But given a dataset of image pairs such
as TLL, authors from [15] conducted human experiments
and found that when other image candidates were proposed
to form pairs, humans remained consistent in their choices
and selected invariably the right target image to make the
pair. Authors from [5] found that results in different visual
studies are highly influenced by the task requirements ; in
our case the task is defined by the visual similarity without
taking into account the semantic similarity. In addition, [4]
showed that, for the task of grading the similarity between
images, the quantitative analysis of the similarity scores re-
ported by subjects reached a consensus.

Authors from [15] tried to reproduce the human similarity
judgments from a given image pairs dataset with different
neural architectures and, as mentioned earlier, they found
that the learned convolutional features were not adapted for
this task. Later [17] improved the similarity scores by using
even more descriptors crafted for different uses (color only,
shape only, etc.), and by using the right descriptor for each
pair as oracle. None of [15, 17] worked on features adapta-
tion, neither learned a model on a part of the dataset, ma-
king us the first to propose a baseline for this task. As com-
parative work, starting from the observation that traditional
metrics (L2, PSNR, etc.) disagree with human judgments,
authors from [13] already learned a low-level perceptual
measure of similarity from image patches affected by dis-
tortions. The poor results obtained by [17] on TLL by using
the low level perceptual learned similarity from [13], as
well as with higher level semantic features confirm the pre-
vious study of [6] stating that human visual similarity was
not based in the visual cortex but may be the result of pro-
cessing done in the primate inferior temporal (IT) cortex.
In our case, we hypothesize that even if neural networks are
learned to be robust to cases where images are semantically
similar but visually dissimilar, they still carry useful (and
reusable) information about texture, shapes, etc. When dea-
ling with relatively small datasets such as TLL, based on
a strategy originally introduced in [6], we propose to use
different layers of pre-trained networks with the opposite
objective of categorization as a rough approximation of the
visual cortex and learn only an adaptation function corres-
ponding to the approximation of the the primate IT cortex
through the metric learning framework.

Similarity learning is closely related to distance metric
learning where the goal is to learn a distance function over
objects that measures how similar two objects are. In our
case, we look for a model able to bring closer each trai-
ning image pair, while moving away all other images that

FIGURE 1 – Examples of image pairs from the "Totally
Looks Like" dataset. Similarity can be based on the color,
shape, texture, layout, facial similarity, etc.

would form a less good pair than the ground-truth one. For
each image, we only have a single solution which makes
our problem close to one-shot learning where metric lear-
ning has been considered [18] by using Siamese networks
[19]. Another wildely used architecture in deep metric lear-
ning is the triplet network [20] where for each positive pair,
a negative image is also provided to learn simultaneously
to gather the positive images while increasing the distance
to the negative image. In a similar fashion, [9] was able
to provide powerful representations capturing human beha-
vior by asking participants to select the one-odd-out from
a triplet of images and thus learning a model to mimic it.
It has been shown that those architectures suffer from sam-
pling issues that could be partially solved with complex
mining strategies [21, 22].
For the sake of simplicity, we rely here on the hypothesis
that each image in a pair has a stronger connection than
with any other image in the dataset. We then learn a func-
tion able to bring closer the right image to the query than
any other image. By doing so, we aim to bypass the sam-
pling issue and use a generalization of the triplet loss si-
milar to the N-Loss [23]. Inspired from previous works in
cognitive sciences, we propose the first baseline for the task
of visual similarity between images without taking into ac-
count semantic similarity.
This research work was recently accepted for publication at
the ICIP 2021 international conference. In this new article,
we expand on this previous work by using and comparing
new pre-trained feature extractors on other datasets.

3 Learning image visual similarities
We propose to learn an adaptation function able to com-
pute visual similarity from image pairs and to involve it in
an image retrieval task (Fig. 2). Inspired by [6], the features
extraction part (Fig.2 (a)) could be interpreted as the visual
cortex while the learned adaptation matrix and the mea-
sure deciding on the visual similarity between two images
(Fig.2 (b)) can be viewed as the primate IT cortex.

3.1 Image retrieval task
We assume that we have an image dataset, structured as
pairs of visually similar images (considered as the ground-
truth (GT)). We consider each pair as the juxtaposition of
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FIGURE 2 – Pipeline to learn an adaptation function able
to compute visual similarity from image pairs.

a left image and and a right image, leading to two sets of
images. As in [15], we formulate this problem as an image
retrieval task. For each query in the left set of images, we
rank all the images in the set of right, according to a gi-
ven similarity measure φ(·, ·), and reciprocally. From this
ranking, we want that for each query, the best returned can-
didate is the one expected by the GT pair.
We know from [24] that asymmetry in human judgment of
similarity is important. For example, in Fig. 1, most hu-
mans will think that the zucchini looks like the penguin
rather than the penguin looks like the zucchini. In our case,
as we do not have the direction information of which image
from left or right is looking to the other one, we cannot use
an asymmetric function such as the Tversky Ratio Model
[24] and φ(·, ·) is here a simple cosine similarity. However,
we will embed this asymmetry in the evaluation function.

3.2 Image representation
As pre-processing, we extract visual features for each
image (right, left) from pre-trained networks. Different
layers were used for some architectures based on Residual
Networks while only the last layer was adopted for more
complex ones due to the difficulty to localize the middle
layers ( FaceNet and transfomers). For more details, please
refer to Table 1 in the annex.

We reduce the feature maps of each layer to a simple vec-
tor with the same dimension as the number of channels, by
averaging features maps on the spatial dimensions follo-
wed by L2 normalization. By doing so, each image is re-
presented as the concatenation of features extracted from
different layers to capture information, from low to high
levels. To avoid overfitting, we reduce the number of di-
mension of the original vectors (up to 15k+) with a PCA.
Left and right vectors are respectively named dleft, dright
and form the image representations.
This pre-processing step (Fig. 2 (a)) is done once before
training and can be interpreted as a rough approximation
of visual features extracted by the human visual cortex.
Indeed, the object recognition and visual similarity assess-
ment is done in the Ventral Stream which is composed of
the Visual Cortex and the Primate IT Cortex [25]. The Vi-
sual Cortex is decomposed into sub-regions (V1-to-V4) ;
V4 is particularly known to respond to orientation, color,
disparity and simple shapes and it is directly connected to

the Primate IT Cortex. Since the different features V4 re-
sponds to are located in different levels of a CNN (color
and orientation are lower levels and extracted from early
layers while shapes are higher layer levels) we propose
to approximate V4 region by taking as input the different
layers of a pre-trained CNN (aiming to extract color, orien-
tation, shape, etc.) and directly pass them to our adaptation
module. It then becomes obvious that this learned adapta-
tion module directly wired to the V4 visual features simu-
lated by the frozen pre-trained CNN is our model of the
Primate IT cortex we propose to learn in a contrastive set-
ting.

3.3 Adaptation function learning

We look for an adaptation function able to bring closer the
left embeddings (dleft) to the right ones (dright) of the cor-
responding pairs closer than any other data. We model our
adaptation module as the multiplication between a (lear-
nable) weight matrix W and input features dleft, dright
followed by a ReLU activation. We will refer to the adapta-
tion of the dleft, dright features as aleft, aright (Fig. 2 (b)).

Previous works used contrastive or triplet loss [19, 20]
when learning from pairs or triplets. To avoid sampling is-
sue, as the whole pre-processed embeddings are light in
memory, we build a similarity matrix by measuring simila-
rity of each left image to each right image with the φ(·, ·)
similarity function. The corresponding GT is the identity
matrix. We can thus learn to classify by using a softmax
activation, followed by a Cross-Entropy loss function L.
We learn to find the right image from left queries and left
images from right queries simultaneously, by averaging the
directed Lleft to right and Lright to left losses as in Eq. 1.

Lleft to right = CrossEntropy(softmax(φ(aleft, aright) · σ),1)
Lright to left = CrossEntropy(softmax(φ(aright, aleft) · σ),1)

L = (Lleft to right + Lright to left)/2
(1)

We used a parameter σ in Eq. 1, often referred as a tempe-
rature parameter in the literature. This specific parameter σ
has already been used with success in previous works such
as in [26]. In our case, by using a large σ, we are able to
peak the softmax distribution to near binary values. This
can be viewed as a form of regularization. Let us consider
the case where the pair is successfully matched, without
σ the loss would still continue to try to bring the adap-
ted embeddings even closer while they already are the best
matches. But, when a large σ is used, the correct best match
will have a value close to 1 not penalizing anymore the loss
for right classification and thus not trying to continue to
learn on adapted embeddings which are already optimal.
We show the positive influence on learning and generaliza-
tion by using a large σ in Table. 1.



FIGURE 3 – Comparison of Asymmetric Recall curves at
different ranks between baselines with σ = 15. Dashed line
correspond to performances before adaptation, plain ones
correspond to the adapted ones.

4 Experimental study
4.1 TTL Dataset
We considered in our experimental study the Totally Looks
Like (TLL) image dataset introduced earlier. It is composed
of 6016 image pairs, perceptually similar but semantically
unrelated (some illustrative samples are provided in Fig. 1).
The images come from very different domains such as pho-
tography, cartoons, paintings, sketches, logos, etc.
The dataset can be split into two sub-datasets : one of 1817
pairs containing only well centered faces (noted TLLfaces)
and one of 4199 pairs of images captured from the wild
(noted TLLobj). Since [12] already focused on the particu-
lar case of facial similarity with data richer than pairs on a
bigger dataset, we will focus on the more general case of
the 4199 remaining pairs. To subtract the TLLfaces subset
from the whole TLL, we labeled as face-pairs only pairs
where faces were detected in both right and left images
with a Haar Cascade classifier. In this context, the re-
maining set (TLLobj) still contains pairs where faces are
compared to other animals, objects, paintings, etc. due to
strange facial expressions or other features.

4.2 Protocol
For each experiment, the TLLobj dataset of 4199 pairs was
divided into 75-25 train-test sets. We did not use a valida-
tion set due to the non significativness of the scores obtai-
ned on too small validation or testing bases, furthermore,
if we decrease the training set size, the exhaustivity of the
different ways that human compare images is too partial.
We used a PCA with 256 dimensions to compress the pre-
computed embeddings into dleft, dright. Experimentally,
we found that 256 was able to remove the noise reducing
both, the input space and overfitting of our adaptation. Thus

FIGURE 4 – Results before (B) and after (A) adaptation.
The first column corresponds to the query, the second to
the GT and the other images correspond to the returned
candidates.

we will use those compressed vectors both as a second ba-
seline and as inputs of our method. We used then an adap-
tation vector size of 1024, thus the matrix W is sized from
256 to 1024. As we do not have a validation set, we ex-
perimentally set the number of epochs to 150 and we se-
lected the optimal number of epochs by bootstrapping for
each model. This provides a good compromise between
low overfitting and the best possible model if we had an
oracle to select it.
Due to the small number of examples in the testing base
and the stochasticity induced by the random split and ma-
trix weights initialization, we run our experiments 20 times
with different splits and matrix initializations.

4.3 Evaluation and results
As discussed previously, human similarity judgment has
been found to be asymmetric [24]. Since we do not have
the asymmetry indications in the TLL dataset, we propose
to evaluate the results in an optimistic way : if the pairing is
found in one direction or another, the pairing is considered
as successful. We refer to this optimistic recall as Asymme-
tric Recall (aR).
Results are reported on Fig. 3 and Tab. 1. We computed the
Asymmetric Recall on 20 random tests splits and display
the mean scores surrounded by two standard deviations.
From these results, we observe the strong influence of the
temperature σ on the results. Our method is compared to
the baselines (with and without) dimension reduction. We
can see a 2.25×, 3.55× and 4.53× average improvement
for aR@{1, 5, 20} by only using the Clip_RN50×4 fea-
tures.
We provide a few qualitative results in Fig. 4 from the test
set. The second case shows that none of the previous nei-



ther our method is able to find the right image, however
our method was able to capture the sharp hairstyle and gla-
cial aspect of the picture. The first and last ones show the
limitation of purely semantic features for visual retrieval,
while our method leads to more diverse results. On the last
example, it can be noticed that while a semantically biased
features extractor will firstly output cats when querying a
cat, our method finds image from very different classes,
still sharing connection on the dark eyes surrounding.

Comparative study. Datasets scales and contents in-
fluence the results of each learning approach, which made
us question the importance of the pre-trained network cho-
sen for the features extraction module. In the Table 1 in
annex we compare Residual networks of different depths :
ResNet18, ResNet50, ResNet101, ResNet152, [27], the
self-supervised DINO framework pre-trained with Re-
sNet50 [28], FaceNet pre-trained on VGGFace2 [21], BiT-
M of different sizes : ResNet-50x1, ResNet-50x3, ResNet-
101x1, ResNet-101x3, and ResNet-152x4 [29], Barlow
Twins Self-Supervised model pre-trained on ResNet50
[30] and CLIP, a framework that works on learning visual
concepts from natural language supervision [31].
In [32], they found that the unsupervised models as well
as self-supervised ones were the best at modelling and ap-
proximating the ventral visual stream, though their simi-
larity task is different from ours. We compared different
learning types to confirm that self-supervised models are
the best ones for approximating the visual ventral system,
which is coherent with their findings.

5 Discussions
In this article, we focus on the specific task of learning
visual image similarities. Inspired by previous works on
neural features adaptation to psycho-cognitive representa-
tions, we proposed a method to adapt semantic neural re-
presentations to visual ones. In average, our method im-
proves the retrieval score up to 4.53×. We observed as well
a qualitative improvement on the returned candidates. In
addition, we saw that the CLIP framework was the best
in our case, and we assume that it is due to two things :
(1) First, such model has been trained on a dataset which
consists of 400M images gathered from the internet ; (2)
Second, because of the robustness of the CLIP model and
its ability to generalize the concepts as well as its flexi-
bility when it comes to semantic bias. Despite those im-
provements, some retrieval results are still not meaningful.
Accordingly to [14], in contrary to humans, neural features
may be less suited to achieve viewpoints invariance. Mo-
reover, as for several pairs the shared visual similarity re-
lies on few pixels, this problem could be tackled in a fine-
grained framework. Since pairs in the TLL dataset are not
equally sampled from the meta-features of an image (co-
lor, texture, layout, etc.), identifying those different meta-
features used by human to judge about the visual similarity
between images could help to re-balance learning. Further
investigations are ongoing.
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