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ABSTRACT

We propose a novel method for protecting trained models
with a secret key so that unauthorized users without the cor-
rect key cannot get the correct inference. By taking advan-
tage of transfer learning, the proposed method enables us to
train a large protected model like a model trained with Im-
ageNet by using a small subset of a training dataset. It uti-
lizes a learnable encryption step with a secret key to gener-
ate learnable transformed images. Models with pre-trained
weights are fine-tuned by using such transformed images. In
experiments with the ImageNet dataset, it is shown that the
performance of a protected model was close to that of a non-
protected model when the correct key was given, while the
accuracy tremendously dropped when an incorrect key was
used. The protected model was also demonstrated to be ro-
bust against key estimation attacks.

Index Terms— Model Protection, Learnable Image En-
cryption, Model Watermarking

1. INTRODUCTION

Training successful deep neural networks (DNNs) is very ex-
pensive because it requires a huge amount of data and fast
computing resources (e.g., GPU-accelerated computing). To
train a convolutional neural network (CNN), for example, the
ImageNet [1] dataset contains about 1.2 million images, and
training on such a dataset takes days and weeks even on GPU-
accelerated machines. In fact, collecting images and label-
ing them will also consume a massive amount of resources.
Moreover, algorithms used in training a CNN model may be
patented or have restricted licenses. Considering the expenses
necessary for the expertise, money, and time taken to train a
CNN model, a model should be regarded as a kind of intel-
lectual property. While distributing a trained model, an illegal
party may also obtain a model and use it for its own service.

To protect the copyrights of trained models, researchers
have adopted digital watermarking technology to embed
watermarks into the models [2–9]. These works focus on
identifying the ownership of a model in question. However,
a stolen model can be directly used by an attacker without
arousing suspicion. Moreover, a stolen model can be ex-
ploited through model inversion attacks [10] and adversarial
attacks [11]. Therefore, a trained model should be protected

against unauthorized access beyond ownership verification.
Recently, Fan et al. [4] proposed a passport-protected

model-protection method. However, in their work, the net-
work has to be modified with passport layers that use pass-
ports, and there are significant overhead costs in both training
and inference time. Another work [12] introduced a model
protection method by taking inspiration from adversarial
defenses [13, 14] that exploit the uniqueness of a key. They
utilized a block-wise transformation with a key for model pro-
tection [12]. However, it was tested only on CIFAR-10 [15],
and the protected model was trained from scratch. Consider-
ing a large dataset like ImageNet [1], it is not feasible to train
a protected model from scratch as in [4, 12]. Although, both
the passport-protected [4] and key-protected [12] methods
train protected models from scratch, they do not consider
transfer learning.

Transfer learning has been proved to be effective in var-
ious visual recognition tasks [16]. Transfer learning can be
used in either of two scenarios: a pre-trained model can be
transferred to a new model with the same number of classes
or to a new one with a different number of classes (usually
a lower number of classes). In this paper, we focus on the
first scenario (i.e., transfer to the same number of classes) to
confirm the effectiveness of the proposed method.

We propose a model protection method with a secret key
that takes advantage of transfer learning for the first time. The
proposed method also allows us to use a small subset of a
training dataset to replace an unprotected model with a pro-
tected one. In addition, it does not need to modify a network,
and therefore, there is no overhead for both training and in-
ference time. In an experiment on ImageNet, the performance
of a model protected by the proposed method is demonstrated
not only to be close to that of a non-protected one when the
key is correct but also to significantly drop when using an in-
correct key.

2. RELATED WORK

2.1. Model Watermarking

There are mainly two categories of DNN model watermark-
ing: white-box and black-box. A white-box approach re-
quires access to model weights for embedding and extract-
ing a watermark as in [2, 4, 6, 8]. In contrast, black-box ap-

ar
X

iv
:2

10
3.

03
52

5v
1 

 [
cs

.L
G

] 
 5

 M
ar

 2
02

1



proaches [3–5, 7, 9] do not need to access model weights and
observe the input and output of a model in doubt to verify the
ownership of the model.

These existing model-watermarking schemes focus on
ownership verification only. Thus, a stolen model can be
directly used and exploited without arousing suspicion be-
cause the performance of a protected model (i.e., fidelity) is
independent of the embedded watermark.

In addition, Fan et al. [4] pointed out that conventional
ownership verification schemes are vulnerable against am-
biguity attacks [17] where two watermarks can be extracted
from the same protected model, causing confusion regarding
ownership. Therefore, Fan et al. [4] introduced passports and
passport layers. The passports in [4] are a set of extracted fea-
tures of a secret image/images or equivalent random patterns
from a pre-trained model, and the passport layers are addi-
tional layers in the network. Therefore, there are significant
overhead costs in both the training and inference phases, in
addition to user-unfriendly management of lengthy passports
in [4]. Moreover, the protection method with passports [4]
was evaluated only on CIFAR datasets [15] and does not con-
sider transfer learning.

2.2. Learnable Image Encryption

Learnable image encryption perceptually encrypts images
while maintaining a network’s ability to learn the encrypted
ones for classification tasks. Most early methods of learnable
image encryption were originally proposed to visually protect
images for privacy-preserving DNNs [18–23].

Recently, adversarial defenses in [13, 14] also utilized
learnable image encryption methods. Here, instead of pro-
tecting visual information, these works focus on controlling
a model’s decision boundary with a secret key so that ad-
versarial attacks are not effective on such models trained by
learnable transformed images.

Another use case of learnable image encryption is the
model protection proposed in [12]. However, the method
in [12] requires training a protected model from scratch and
never considers transfer learning. In this paper, we adopt a
block-wise image encryption method as in [13, 14] to trans-
form images prior to training and testing.

3. PROPOSED METHOD

3.1. Overview

An overview of image classification with the proposed
method is depicted in Fig. 1. In the proposed model protec-
tion, a model f is not trained from random weights. Instead,
f is trained by taking advantage of transfer learning. In other
words, f is trained by fine-tuning pre-trained weights with
a small dataset that consists of input images transformed by
using secret key β. The resulting f is protected by key β. For
testing, test images are also transformed with the same key
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Fig. 1. Image classification with proposed model-protection
method

β before testing. Therefore, the authorization of model f is
verified upon secret key β during model inference.

3.2. Block-wise Transformation

We use negative/positive transformation with a secret key to
transform input images before training or testing a protected
model as well as in [14]. The following are steps for trans-
forming input images, where c, w, and h denote the num-
ber of channels, width, and height of an image tensor x ∈
[0, 1]

c×w×h.

1. Divide x into blocks with a size of M such that
{B(1,1), . . . , B( w

M , h
M )}.

2. Transform each block tensorB(i,j) into a vector b(i,j) =
[b(i,j)(1), . . . , b(i,j)(c×M ×M)].

3. Generate a key β, which is a binary vector, i.e.,

β = [β1, . . . , βk, . . . , β(c×M×M)], βk ∈ {0, 1}, (1)

where the value of the occurrence probability P (βk) is
0.5.

4. Multiply each pixel value in b(i,j) by 255 to be at 255
scale with 8 bits.

5. Apply negative/positive transformation to every vector
b(i,j) with β as

b′(i,j)(k) =

{
b(i,j)(k) (βk = 0)
b(i,j)(k)⊕ (2L − 1) (βk = 1),

(2)

where ⊕ is an exclusive or (XOR) operation, L is the
number of bits used in b(i,j)(k), and L = 8 is used in
this paper.

6. Divide each pixel value in b′(i,j) by 255 to be at [0, 1]
scale.



(a) Australian Terrier (b) Proboscis Monkey (c) Photocopier

Fig. 2. Example of block-wise transformed images (M = 4)
with key β (second row). Images in first row are original.

7. Integrate the transformed vectors to form an image ten-
sor x′ ∈ [0, 1]

c×w×h.

An example of images (three different classes from the Ima-
geNet test set) transformed by negative/positive transforma-
tion with M = 4 is shown in Fig. 2.

3.3. Transfer Learning

In practice, CNNs are not trained from the beginning with
random weights because creating a large dataset like Ima-
geNet is difficult and expensive. Therefore, CNNs are usually
pre-trained with a larger dataset [24]. There are two major
transfer-learning scenarios:

• Fixed CNN: A pre-trained CNN model is used as a
fixed feature extractor, and the last fully connected
layer is replaced with a targeted number of classes. In
other words, convolutional layers are frozen, and only
the last fully connected layer is trained with random
initialization from scratch.

• Fine-tuned CNN: In this scenario, the CNN is fine-
tuned from a pre-trained model. Here, it is possible
that some convolutional layers can be fixed or the whole
CNN is fine-tuned.

In this paper, we fine-tuned a whole CNN with a small
dataset comprised of learnable transformed images with a se-
cret key in order to protect a model.

3.4. Key Estimation Attack

We consider a threat model where a model is stolen and trans-
formation details are known except for the secret key. In this

scenario, an attacker may try all possible keys (brute-force at-
tack). The key space K of negative/positive transformation is
given by

K(c×M ×M) = 2(c×M×M). (3)

Therefore, the key space will vary with respect to block size
M .

However, checking all possible keys may not be feasible,
and the attacker may estimate a key heuristically by observing
the accuracy of his/her test dataset. Elements in β can be
rearranged in accordance with the improvement in accuracy.
We simulate this attacking scenario by swapping values in
each index pair of β if the accuracy improves.

Key estimation attacks do not guarantee that the attacker
will find the correct key because the attacker does not know
the actual performance of the correct key. The robustness of
the proposed method against key estimation attacks will be
demonstrated in the following section on experiments.

4. EXPERIMENTS

4.1. Setup

We utilized the ImageNet dataset [1], which comprises 1.28
million color images for training and 50,000 color images
for validation. We progressively resized images during train-
ing, starting with larger batches of smaller images to smaller
batches of larger images. We adapted three phases of training
from the DAWNBench top submissions as mentioned in [25].
Phases 1 and 2 resized images to 160 and 352 pixels, re-
spectively, and phase 3 used the entire image size from the
training set. The augmentation methods used in the experi-
ment were random resizing, cropping (sizes of 128, 224, and
288, respectively, for each phase), and random horizontal flip.
Both training and testing images were transformed with neg-
ative/positive transformation with a block size M = 4.

We deployed deep residual networks [26] with 50 layers
(ResNet50) with pre-trained weights and fine-tuned for 15
epochs with cyclic learning rates [27] and mixed precision
training [28]. We adapted the training settings from [25] with
the removal of weight decay regularization from batch nor-
malization layers.

4.2. Classification Performance

Table 1 summarizes the classification results for protected
models and a baseline (unprotected one). We fine-tuned mod-
els by using subsets of the training dataset with 10%, 20%,
30%, and 100% of the training set, respectively. Images in
the sub-datasets were transformed by negative/positive trans-
formation with a secret key β and M = 4 as mentioned in
Section 3.2. We tested the proposed method under three con-
ditions: with a correct key β, with an incorrect key β′, and
with plain images.



Table 1. Accuracy (%) of protected models and baseline
model for ImageNet

Model Correct (β) Incorrect (β′) Plain

10% dataset 64.13 0.16 0.30
20% dataset 67.45 0.25 1.04
30% dataset 68.87 0.24 0.73
100% dataset 72.63 0.69 0.36

Baseline 73.70 (Not protected)

Table 2. Accuracy (%) of protected models against key esti-
mation attack for ImageNet

Model Estimated (β′)

10% dataset 0.17
20% dataset 1.61
30% dataset 9.42
100% dataset 25.43

When a correct key β was given, the model trained with a
10% dataset had about 9% less accuracy than that of the base-
line. However, when the whole dataset was used, the accuracy
was almost the same as the baseline accuracy (i.e., 72.63%).
Even when the whole dataset was used, transfer learning sig-
nificantly reduced the training time because the model was
trained only for 15 epochs. When using an incorrect key β′ or
plain images, the accuracy was extremely low, suggesting the
strength of the proposed method against unauthorized access.

4.3. Robustness Against Key Estimation Attack

We also evaluated the proposed method in terms of robustness
against key estimation attacks. Table 2 captures the results for
all protected models under the use of a subset of the training
dataset with various sizes. The model trained by the smallest
dataset (i.e., 10%) had the lowest accuracy, and that trained
by the whole dataset had a 25.43% accuracy. All in all, the
key estimation attack did not guarantee that a good enough
key would be found, and the performance accuracy was not
usable, suggesting the robustness of the proposed method.

4.4. Functional Comparison with State-of-the-art Meth-
ods

To the best of our knowledge, there are only two meth-
ods [4, 12] where the protection method is directly dependent
on model performance (i.e., key/passports protected models).
However, both of them were not tested on ImageNet, and it
is not feasible to train an ImageNet model from scratch. The
other model watermarking methods such as [2–9] focus on
ownership verification only when a stolen model is in ques-
tion. Therefore, the embedded watermark is independent of

Table 3. Functional comparison of proposed method and
state-of-the-art methods

Model Performance Network Performance OverheadDependency Modification Degradation

Scheme V1 [4] Passports Yes Low Significant
Pixel Shuffling [12] Key No Low No
Proposed Method Key No Low No

model accuracy.
Since the state-of-the-art model-protection methods [4,

12] cannot be directly compared with the proposed method as
described above, we performed a functional comparison with
a key-protected method (Pixel Shuffling) [12] and a passport-
protected method (Scheme V1) [4]. Both methods control the
accuracy of performance by using a key or passports and have
low performance degradation. However, scheme V1 [4] has
to modify a network with additional passport layers; there-
fore, it introduces overheads in training (15%–30%) and
inference (10%) processes as mentioned in [4]. In contrast,
the proposed method does not introduce any overhead during
training and testing, in addition to being applicable to transfer
learning.

5. CONCLUSION

In this paper, we proposed a model protection method in
which a model is fine-tuned with a subset of a training dataset.
Images in the sub-datasets are transformed by a block-wise
transformation with a secret key prior to training and testing
a model. The performance accuracy of a protected model
trained by using 10% of a training dataset was about 9% less
than that of a baseline model. When using the whole dataset,
the accuracy was close to the baseline accuracy, and transfer
learning significantly reduced the training time because the
model was trained only for 15 epochs. The proposed model-
protection method was also confirmed to be robust against
key estimation attacks and not usable when using an incorrect
key or plain images. Moreover, it does not introduce any
overhead in both training and inference time.
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