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ABSTRACT

Visual surface inspection is a challenging task owing to the

highly diverse appearance of target surfaces and defective re-

gions. Previous attempts heavily rely on vast quantities of

training examples with manual annotation. However, in some

practical cases, it is difficult to obtain a large number of sam-

ples for inspection. To combat it, we propose a hierarchi-

cal texture-perceiving generative adversarial network (HTP-

GAN) that is learned from the one-shot normal image in an

unsupervised scheme. Specifically, the HTP-GAN contains a

pyramid of convolutional GANs that can capture the global

structure and fine-grained representation of an image simul-

taneously. This innovation helps distinguishing defective sur-

face regions from normal ones. In addition, in the discrimina-

tor, a texture-perceiving module is devised to capture the spa-

tially invariant representation of normal image via directional

convolutions, making it more sensitive to defective areas. Ex-

periments on a variety of datasets consistently demonstrate

the effectiveness of our method.

Index Terms— One-shot learning, texture-perceiving

module, visual surface inspection, generative adversarial net-

work

1. INTRODUCTION

Due to the rapid development of deep neural networks [1, 2,

3, 4], visual surface inspection [5, 6] has attracted increasing

attention as an important technology in many intelligent in-

dustrial applications. Visual surface inspection aims to detect

the abnormal regions on the surface of material using visual

images. It is a challenging task owing to various image noises,

texture variations of the target surface, and highly diversified

appearance of abnormal regions.

Typical visual inspection approaches can be categorized

into two main groups: traditional methods [6, 7] and learning-

based methods [5, 8, 9, 10]. Traditional methods adopt hand-

crafted features to perform surface inspection, which cannot

be well generalized to new scenarios. Learning-based ap-

proaches achieve significant performance when equipped

with large amounts of manually annotated training data.

However, in some practical cases, such as surface inspection

under planes [11], only a small number of normal samples, or

even a single sample, are available. Therefore, how to design

the one-shot surface inspection method is very important for

practical scenarios.

We present the problem of one-shot unsupervised surface

inspection: given an example of a normal image as training

data, all defective regions should be detected and segmented

for arbitrary images with the same texture category as the nor-

mal image. The challenge lies in 1) how to design an adapt-

able perceiving model that is prone to handle the texture vari-

ations; 2) how to perform a more generalized surface inspec-

tion model in the one-shot way.

To deal with the challenge, we propose a novel hierarchi-

cal texture-perceiving generative adversarial network (HTP-

GAN) that is learned from a one-shot normal image in an un-

supervised scheme. Specifically, HTP-GAN model contains a

pyramid of convolutional GANs which utilize a single image

to simultaneously extract the global and fine-grained repre-

sentation of the image. This guides the model to indeed learn

the normal texture representation of the category of the corre-

sponding image and can distinguish the defective surface re-

gions. In addition, in the discriminator of HTP-GAN, texture-

perceiving module is devised to capture the spatially invariant

representation of normal image via directional convolutions,

making it more sensitive to defective areas. Experiments on a

variety of datasets consistently demonstrate the effectiveness

of our method.

We summarize our main contributions as follows:

• We introduce a novel one-shot surface inspection network

with a pyramid of convolutional GANs, achieving unsuper-

vised surface inspection with a single example of normal

image.

• A texture-perceiving module is devised to capture the spa-

tially invariant representation of normal image via direc-

tional convolutions, making it more sensitive to defective

areas.

• Experimental results achieve the state-of-the-art perfor-

mance on two public datasets, which demonstrate the ef-

fectiveness of the proposed approaches.

http://arxiv.org/abs/2106.06792v1
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Fig. 1. Overview of the proposed hierarchical texture-perceiving generative adversarial network (HTP-GAN). In the training

phase, the HTP-GAN is devised to capture the spatially invariant representation of a single normal image via directional con-

volutions at multiple scales. In the testing phase, the well-trained discriminators can indeed memorize the latent distribution

properties of normal texture representation and distinguish the defective surface regions.

2. HIERARCHICAL TEXTURE-PERCEIVING

GENERATIVE ADVERSARIAL NETWORK

Our goal is to detect the abnormal regions on the surface of

material from a single image. When large amounts of train-

ing data are available, a well-trained generative adversarial

network (GAN) can easily learn a representation of the distri-

bution of the target samples via a generator G and a discrim-

inator D. But in the case of the limited number of samples,

conventional GAN is hard to learn such a representation due

to insufficient training data [12]. In the context of learning

from a single image, inspired by the SinGAN [1], we adopt

the downsampling strategy to generate different scales of im-

ages from a single image as training samples. Then the net-

work is able to learn internal distributions at different scales.

At the same time, a pyramid of convolutional GANs is uti-

lized to simultaneously capture the statistics of complex im-

age structures and perceive the fine-grained representation of

the normal image. To our best knowledge, this is the first

time that the SinGAN being applied in the one-shot surface

inspection task.

2.1. Hierarchical Fully Convolution Architecture

In this section, we will detail the overall architecture of the

proposed HTP-GAN. As shown in Fig. 1, the network is based

on SinGAN [1] to achieve the one-shot learning task. We

change the traditional GAN from two perspectives: 1) we

resize the input image to generate the multi-scale images.

Specifically, given an image of normal surface x0, we adopt

the down-sampled strategy to generate an image pyramid of

x : {x0, . . . , xN}. Multi-scale inputs contain more fine de-

tails and texture information. 2) a pyramid of convolutional

GANs are utilized to simultaneously capture the character-

istics of complex image structures and perceive fine-grained

representation of the training image. So we need to design

a pyramid of generators {G0, . . . , GN} and discriminators

{D0, . . . , DN} to handle the multi-scale inputs.

At the training phase, the proposed HTP-GAN is a multi-

stage training process from coarse-grain to fine-grain. Firstly,

a noise map is injected into the generator GN at the coars-

est scale to generate the x̃N . Then a combination between

the generated image and the noise map sequentially passes

through all other generators up to the finest scale:



x̃n = Gn (zn, (x̃n+1) ↑
r) = (x̃n+1) ↑

r +ψn (zn + (x̃n+1) ↑
r), (1)

where ψn is a fully convolutional net with 5 conv-blocks

and ↑r denote to the up-sampling operation. As shown in

Fig. 1, the first 4 conv-blocks consist of a 3× 3 convolutional

layer following with a BatchNorm and a LeakyReLU. The

last conv-block consist of a 3 × 3 convolutional layer and a

tanh activation layer. In addition, the ψn is able to learn the

residual feature of a generated image at a finer scale.

2.2. Textual-perceiving Discriminator

A textual-perceiving module in the discriminator is devised

to capture the spatially invariant representation of a normal

image via directional convolutions, making it more sensi-

tive to defective areas. Specifically, the textual-perceiving

discriminator consists of the several conv-blocks fn, the

textual-perceiving module [13] (cn, gn) and a sigmoid acti-

vation layer. As shown in Fig. 1, the several conv-blocks fn
are used to extract preliminary features Fn from the gener-

ated image. Then, the cn and gn are designed to capture the

spatially invariant representation of normal image via eight

directional texture features under the guidance of correspond-

ing directional feature map Ti. Specifically,

Pn = cn (cat (fn(x̃n), Ti)) (i = 1, 2 · · · 8), (2)

where cn denotes several convolutions which contains a 3× 3
convolution layer with a BatchNorm and a ReLU activation

layer, cat denotes the concatenation operation. In our design,

total eight directions are adopted, including top, bottom, left,

right, top left, bottom left, top right, and bottom right. Each

directional map Ti is a generated trend square matrix that de-

creases from 1 to 0 in a certain direction. Finally, the output

features of different branches are concatenated to form the

whole spatial invariant feature Mn, that is,

Mn = Sigmoid(gn (cat (P1, P2 · · ·P8))), (3)

where gn represents a set of standard convolution block,

Mn ∈ R
1×H×W is the distinguish map that is used to calcu-

late the loss of discriminator. Since the proposed directional

convolution unit is sensitive to local variations of the image

along each direction, it can make the network well adaptable

to spatial distortions and scale variations. Intuitively, the dis-

criminator of a well-trained GAN memories the patch distri-

bution of a normal image. So it should be insensitive to the

normal regions but varies drastically in the abnormal regions.

2.3. Hierarchical Fusion for Surface Inspection

In this section, we introduce a hierarchical fusion strategy to

fuse the multi-scale distinguish maps for producing the final

segmented result.

Inspired by [5], the information entropy is a suitable met-

ric to represent the output of discriminator for abnormal re-

gion segmentation. Thus, the information entropy of multi-

scale distinguish maps are expressed as following:

Hn =Mn ∗ logMn, (4)

H = {Hn}|
N
n=0 are a set of information entropy of multi-

scale distinguish maps and we refer to H as the coarse in-

spection map set, which reveals the coarse abnormal regions

of the input image.

The GANs have small receptive fields and limited capac-

ity, preventing them from representing the single image. To

capture global textual structure and fine-grained texture in-

formation, we fuse the multi-scale coarse inspection maps to-

gether to better distinguish the abnormal regions. Thus, the

fusion process expresses as following:

R =

N∑

n=0

αn ∗Hn, (5)

where R denotes the final fusion and αn = 1

N+1
are weight-

ing factors.

3. EXPERIMENTS

To evaluate the effectiveness of HTP-GAN in one-shot sur-

face inspection task, we design extensive experiments based

on WOOD Defect Database (WOOD) [14] and Road Crack

Database (CRACK) [15]. Furthermore, we compare our

method with four representative methods as following: (1)

Unsupervised visual surface inspection method proposed

in [5] (ICASSP 2018); (2) Surface defect detection method

based on positive samples and artificial defects [16] (Prical

2018); (3) Automated surface inspection method proposed in

[17] (JOIM 2019); (4) Semantic image segmentation method

proposed in [18] (ECCV 2018).

3.1. Datasets and Evaluation Metrics

Dataset and Setting: WOOD Defect Database (WOOD) and

Road Crack Database (CRACK) are two surface inspection

datasets which are annotated with segmentation labels of ab-

normal regions [5]. For our HTP-GAN, a single image with

normal surface is adopted as the training data, which is the

embodiment of the one-shot surface inspection. To compare

our method with unsupervised methods: [5] and [16], we

adopt the same image with normal surface to train the mod-

els. For supervised methods: [17] and [18], several abnormal

samples and normal samples are used to train the networks.

All images are resized to 256 × 256 size.

Evaluation Metrics: We adopt two evaluation metrics to

compare and analyze experimental results: Intersection-over-

union (IOU) and Pixel Accuracy (pixel acc).
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Fig. 2. Visualization comparison with the state-of-the-art

methods for the surface inspection task.

Table 1. Quantitative comparisons. (IoU(%) / pixel acc(%))
[5] [18] [17] Ours

WOOD 44.83/81.96 47.23/94.45 47.37/93.82 59.83/96.54

CRACK 31.06/58.21 48.68/90.46 33.02/61.56 56.97/96.32

3.2. Comparison with the State-of-the-art Approaches

Tab. 1 shows the performance comparison of our HTP-GAN

against the other four methods in terms of IoU and pixel acc

on the WOOD and CRACK dataset. As we can see in Tab. 1,

our method achieved higher IoU and pixel acc than the four

methods.

In the one-shot setting, when the single normal image or

an image pair (a normal image and an abnormal image) is

given as training data, all four methods can not predict any

abnormal regions or produce a noise map. This result demon-

strates that these methods rely on a tremendous amount of

training data and these models are easy to cause overfitting on

one-shot surface inspection task. Thus, we try to add the train-

ing data on these methods in the supervised learning methods

or adopt the fully convolution network to improve the unsu-

pervised learning methods [1].

Fig. 2 shows the visualization of different methods for sur-

face inspection. [17] has a good performance until we adopt

10 normal-abnormal image pairs for training while [18] per-

forms well on 4 abnormal images. Although improved [5]

detects the more accurate abnormal surface regions than other

methods, our proposed model has a better performance. More

importantly, HTP-GAN only needs a normal image as train-

ing data and achieves the best performance.

3.3. Ablation Studies

Effectiveness of Scale Number. The number of scales in

HTP-GAN architecture has a strong influence on the results.

A small number of scales only can capture the local tex-

(a) Input Image (b) 2 Scales (c) 3 Scales (d) 6 Scales 

(e) 9 Scales (f) 12 Scales (h) Ground Truth(g) 12 Scales w/o TM

Fig. 3. Visualization of influence of different scales and

textual-perceiving module in our proposed HTP-GAN. “TM”

refers to the textual-perceiving module.

tures, leading to poor segmentation results. As the number of

scales increases, Fig. 3 (a)-(f) demonstrates that our proposed

method manages to capture larger structures as well as the

fine-grained representation of the image. It indicates that a

strong representation can help the model to segment most of

the anomalous regions very well.

Effectiveness of Textual-perceiving Module. As shown in

Fig. 3 (g) and (f), by adding the textual-perceiving module,

our method segments more abnormal regions and alleviates

to split normal regions into defects. It demonstrates that the

proposed textual-perceiving module can learn spatially invari-

ant representation of normal images and be more sensitive to

defective areas.

Influence of Different Image Variations. Our proposed

method can handle most variations (i.e.Translation, Mirror,

Scaling). However, for rotation variation, when the train-

ing image contains mostly horizontal textures (such as the

wood in Fig. 3, a 45-degree change in rotation only brings

a slight performance drop 3% in term of IOU score, and no

performance drop in term of pixel accuracy.

4. CONCLUSION

In this paper, we propose a hierarchical texture-perceiving

generative adversarial network (HTP-GAN) to achieve the

one-shot surface inspection task. By applying a pyramid of

convolutional GANs, HTP-GAN can indeed learn the global

and fine-grained representation of normal surface from a sin-

gle image. Thus, it enables discriminators in well-trained

HTP-GAN to exhibit more active responses for the defec-

tive regions. Furthermore, the texture-perceiving module is

devised to capture the spatially invariant representation of

normal, making the discriminator more sensitive to defective

areas. More importantly, the training of the HTP-GAN only

relies on a single image, which explores a more general and

practical solution to the surface inspection task.
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