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Abstract

One of the major challenges in deploying deep neural
network architectures is their size which has an adverse ef-
fect on their inference time and memory requirements. Deep
CNNs can either be pruned width-wise by removing filters
based on their importance or depth-wise by removing lay-
ers and blocks. Width wise pruning (filter pruning) is com-
monly performed via learnable gates or switches and spar-
sity regularizers whereas pruning of layers has so far been
performed arbitrarily by manually designing a smaller net-
work usually referred to as a student network. We propose
a comprehensive pruning strategy that can perform both
width-wise as well as depth-wise pruning. This is achieved
by introducing gates at different granularities (neuron, fil-
ter, layer, block) which are then controlled via an objective
function that simultaneously performs pruning at different
granularity during each forward pass. Our approach is ap-
plicable to wide-variety of architectures without any con-
straints on spatial dimensions or connection type (sequen-
tial, residual, parallel or inception). Our method has re-
sulted in a compression ratio of 70% to 90% without no-
ticeable loss in accuracy when evaluated on benchmark
datasets.

1. Introduction
With the increasing complexity of problems the size of

deep convolutional neural networks (CNNs) is also increas-
ing exponentially to a point where CNNs are so huge that
they are already hitting the computational limits of the de-
vices on which they are running. There is a significant
amount of redundancy in these huge CNNs that can be re-
moved (i.e: pruned) to accelerate them. It is well known
that neural nets are nature inspired, it is also a fact that
pruning these neural nets is also nature inspired. Accord-
ing to human brain development studies [1] “one of the fun-
damental phenomena in brain development is the reduction
of the amount of synapses that occurs between early child-
hood and puberty” and is commonly referred to as synaptic

(a) Filter Pruning [26] (b) Layer Pruning

(c) Branch Pruning [31] (d) Block Pruning

(e) Comprehensive Pruning.
Figure 1. Sample illustration showing pruning at different granu-
larities. (a) Filter pruning. (b) Layer pruning. (c) Branch pruning.
(d) Block pruning. (e) Comprehensive Pruning.

pruning. One of the earliest work on pruning neural net-
works was performed by LeCun in the 1990s [2] in which
network connections were pruned based on 2nd derivative
of weights. Development of CNNs in 1998 again by Le-
Cun [36] and their successful application in ImageNet clas-
sification challenge in 2012 [33] resulted in a revival of this
concept of pruning in 2015 [3]. They used L1 norm to
prune away lighter weights.

Both of these pruning techniques [2, 3] pruned indi-
vidual neurons from the network except that in the re-
cent method [3] L1 norm was used to prune away lighter
weights. Although these methods pruned away a large
number of weights from the network but they had a ma-
jor shortcoming of introducing sparsity. More recent lit-
erature addressed this concern first by pruning filters as
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convolution operations constitutes the main computational
burden of a CNN and second by using sparsity regulariz-
ers [4, 5, 6, 7, 8, 9, 17, 18, 21, 26, 49].

There are two major methodologies in neural net com-
pression i) structured pruning and knowledge distillation.
The existing work on structured pruning [4, 5, 6, 7, 8, 9, 17,
18, 21, 26, 49] addresses only the width of the layer by re-
moving filters based on their importance. However, select-
ing what to prune from large CNNs is an NP-Hard problem,
to find the optimal solution one would need to rank each
filter by turning it off and perform inference using all the
samples. Thus, if we are to prune network structures like
filters we would need to try out all possibilities of filter con-
figurations and choose the best one that has the least effect
on the loss. This problem is addressed in literature by a
sparsity loss and learnable dropout parameters.

In knowledge distillation a large cumbersome CNN
called teacher network is used to train a smaller network
referred to as student network [34]. The student network is
designed by manually removing structured elements such as
filters, layers, blocks from an existing network in an adhoc
manner. Despite several successes in training a student net-
work [37, 38, 39, 39], designing a student network is still
an open problem and is usually performed via hit and try
which is a tedious process.

In our work we overcome these challenges by proposing
a comprehensive pruning strategy that performs both width-
wise (filters) as well as depth-wise (layers, branch, blocks)
pruning in an online manner. For width-wise pruning we
utilize the idea of filter pruning [26, 49] whereas for depth-
wise pruning we proposed layer, branch and block pruning
schemes. The main contributions of our work are as fol-
lows:

• We extend the width-wise pruning strategy via learn-
able dropout parameters and propose a depth-wise
pruning strategy.

• Ours is a comprehensive pruning strategy that per-
forms both width-wise and depth-wise pruning by in-
troducing gates with learnable scaling factor at differ-
ent granularities (filter, layer, sequence of layers or
branch, multi-branched or blocks).

• Instead of pruning layers based on the remaining num-
ber of filters, ours is a global pruning strategy that
eliminates redundant layers considering the overall
structure of the network.

• Our method can also be used to eliminate entire blocks
such as inception blocks from the network and is ap-
plicable to wide-variety of architectures.

• We also propose an objective function that simultane-
ously eliminates filters, layers and blocks by introduc-
ing sparsity in gates with learnable scaling factor.

2. Related Work

2.1. Offline Pruning

Numerous offline filter pruning techniques to rank and
prune filters have been proposed. These methods can be
categorized into two groups: those that analyze the filters
themselves and those that perform pruning based on filter
activations. Ranking and pruning based on filter analysis is
performed using various measures including L1 norm [4],
L1-norm and standard deviation [5], Entropy [6], Geometric
Median [7] and average percentage of zero activations [8].
A new optimization method that enforces correlation among
filters and then safely removes the redundant filters has also
been proposed [9]. Filter activation maps inform us about
whether the certain filter fires on a given dataset. Thus a set
of filters which may have a very distinctive shape may result
in a very low activation and thus can be pruned for a partic-
ular dataset. Similarly, similar filters will result in similar
activations and thus redundancy can also be identified via
activation maps.

Low-rank feature maps [17] and LASSO regression
based channel selection [18] have also been proposed to
perform pruning through activation maps. Similarly, by
forcing the outputs of some channels to be constant al-
low us to prune those constant channels [21]. Additional
losses have also been proposed to increase the discrimina-
tive power of intermediate layers and then select the most
discriminative channels for each layer while rejecting the
other channels [23]. The major drawback of offline pruning
strategies is that in offline structured pruning the network
convergence is stopped to generate a new pruned network
and then this pruned network is converged again and pruned
again, this periodic pruning process may result in a pruned
network that fails to achieve the same accuracy as compared
to the original network. These issues are addressed via on-
line pruning which is discussed next.

2.2. Online Pruning via Scaling Factor

Structured pruning via scaling factors is a technique
where the output of a structure is multiplied to a scaling
factor. In online structured pruning, the pruning is mod-
elled as a task of learning this scaling factor associated to
each filter [26, 49]. This scaling factor acts as an on/off
switch which in its off state mimics the elimination of the
filter. Regularization is usually applied to these scaling
factors to prune the corresponding structures from the net-
work [26, 49]. Several schemes have been proposed to up-
date the values of these scaling factors during training. For
e.g. differentiable Markov Chains has been used to find
prunable filters where each node of the chain is the state
of a filter either on or off [20]. Similarly, if a noise across
layers is represented as a Markov Chain, then its posterior
can be used to reflect inter-layer dependency which act as a
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measure for pruning[25]. Rather than pruning the network
to the maximum possible limit without noticeable loss in
accuracy, pruning can also be performed to achieve a cer-
tain budget. In such cases knowledge distillation loss [34]
with budget aware regularizers have been shown to perform
the desired amount of compression [26].

Most of the online and offline pruning strategies are lim-
ited to width-wise or filter pruning only. There has been
multiple attempts of reducing the depth of the network. This
is usually performed by removing several layers and filters
from the network in an adhoc manners followed by retrain-
ing (for e.g. Yolo vs. Tiny Yolo [29][30], ResNet-101
vs. ResNet-56 [31]). This adversely affect the represen-
tative power of the network and creates challenges during
retraining. In more recent literature the issue of retraining
is addressed using knowledge distillation [34] where the un-
pruned network called teacher network is used to train a
smaller student network via a loss function that minimizes
both the data loss as well as the discrepancy between soft
logits of teacher and student network. In this work, instead
of simplifying a network in an adhoc manner, we extend
the idea of online pruning via scaling factors and show how
these can be applied to any structured element of any gran-
ularity.

3. Methodology
In this work we extend the idea of pruning via scaling

factors and show that it can be applied to any structured el-
ement of any granularity level. It can be applied to coarse
granular structures like layers, blocks, branches or even sub-
networks to fine granular structures like filters or even indi-
vidual neurons.

Although in our work we used sparsity regularizer, one
can even use different regularizations for different granular-
ity levels simultaneously (e.g: applying one regularization
to blocks and another to filters within the block).

3.1. Filter Pruning

The idea of online filters pruning via scaling factors is
fundamentally similar to the concept of dropout [27] in
which units (along with their connections) are randomly
dropped from the neural network during training. Con-
sidering a neural network with L hidden layers hl where
l ∈ {1, · · · , L}. The feed-forward operation f(.) of this
network, which is typically convolution in case of CNNs,
with dropout is represented as:

hl = f(hl−1 � zl−1). (1)

In case of dropout [27] zl−1 is a tensor of independent ran-
dom variables i.i.d. of a Bernoulli distribution q(z). Litera-
ture on filter pruning [26] redefined zl−1 via (reparameteri-
zation trick [28]) using a continuous differentiable function

g having learnable parameters Φ (also known as scaling fac-
tors) as:

hl = f(hl−1 � g(Φf
l−1, ε)) (2)

where g is stochastic w.r.t a random variable ε typically
sampled from N (0, 1) or U(0, 1).

In our design of filter pruning we also place pruning ten-
sor vectors which belong to the uniform distribution in
front of every convolution layer which are multiplied with
the output of convolution layer to zero out (i.e: prune) un-
wanted kernels. These pruning tensors are placed as scaling
factors in the network after convolution layers so that the
output of each filter is multiplied by a corresponding scal-
ing factor. Setting the value of these pruning tensors to zero
will essentially mean pruning their corresponding structure
element from the network in both forward and backward
pass. We update the value of network parameters includ-
ing Phi by simply using sparsity loss Ls(Φ

f ), thus our loss
function is defined as:

L(W,Φ) = LD(W,Φ) + λfLs(Φ
f ) (3)

where LD(W,Φ) is a data loss and λf is the Lagrangian
multiplier and the superscript f indicates that these param-
eters are associated with filter pruning. Although LD could
be any appropriate loss function however in our experiments
we chose it to be cross entropy loss.

3.2. Layers Pruning

Layer pruning has only been scarcely addressed in lit-
erature as a special case of filter pruning [26]. In these
methods a layer is eliminated when all the values in Φ ap-
proaches close to zero or all the filters are turned off. Since
this blocks further propagation of values across the network,
it has only shown to work in case of residual networks [31].
This makes layer pruning only a coincidental event without
any explicit incentive towards loss minimization.

We proposed to explicitly model layer pruning by incen-
tivising the network to reduce its depth. We proposed two
modifications, first, we developed an algorithm that intro-
duces shortcut connections with each convolution layer in
the network and is thus applicable to both ResNets as well
as other networks. Secondly we extend the idea of filter
pruning for layer pruning by introducing a learnable layer
dropout parameter φll. This pruning parameter is multiplied
with the whole convolution layer’s output so the new equa-
tions for any output would be:

hl = f(hl−1)g(Φl
l, ε)) + hl−1 (4)

We then extended the sparse dropout learning for layer
pruning by defining a layer pruning loss function as:

L(W,Φ) = LD(W,Φ) + λlLs(Φ
l) (5)
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Figure 2. Sample illustration showing convolution of 1 × 1 × d1
where d1 is the depth of destination layer.

where Ls(Φ
l) is the layer sparsity loss and λl is the La-

grangian multiplier. This enables the network to decide
what the depth should be and which layers can be skipped.
The combined loss for filter and layer pruning can then be
defined as:

L(W,Φ) = LD(W,Φ) + λfLs(Φ
f ) + λlLs(Φ

l). (6)

Handling Dimension Mismatch: As discussed earlier,
in our design we add a shortcut connection across layer to
be pruned to pass data in the network, but to do this the di-
mensions of the output of the previous layer should be the
same as the dimensions of the output of the current layer.
This leads to two key challenges in performing layer prun-
ing, i) change in spatial dimension and ii) change in depth
dimension. If the depth does not match we can use a con-
volution of 1× 1× d1 where d1 is the depth of destination
layer (see Fig. 2) If spatial dimension does not match we
can use pooling. If both does not match we can use pooling
followed by 1× 1× d1 where d1 to resize the output of the
previous layer.

3.3. Branch Pruning

The idea of branch pruning was first introduced by
ResNets [31] primarily to address the issue of vanishing
gradients in deeper networks. The idea being that if neural
networks can approximate a complicated function they can
also approximate residual function f(hl−1) − hl−1 which
can be defined as:

hl = f(hl−1) + hl−1. (7)

This operation is performed by a shortcut connection and
element-wise addition. Due to this shortcut connection if
identity mappings are optimal, the solvers may simply drive
the weights of the multiple nonlinear layers toward zero to
approach identity mappings.

Similar to layer pruning, here as well we incentivise the
network to reduce its depth by completely eliminating a par-
ticular branch. The type of pruning can be beneficial in
networks with multiple branches such as within inception
block [32] or in those networks that use ensembles of mul-
tiple parallel branches [41]. Here again we propose two

modifications, first, we developed an algorithm that intro-
duces shortcut connections after a branched out sequence
of layers if branches are not already present in the net-
work. Secondly we extend the idea of filter pruning and
layer pruning for branch pruning by introducing a learnable
branch dropout parameter φrl . This pruning parameter is
multiplied with the whole branch. Let a branch is defined
as rl−1 = hl−n : hl−1, so the new equations for any output
would be:

hl = f(rl−1)g(Φr
l , ε)) + hl−n. (8)

We then extended the sparse dropout learning for layer
pruning by defining a layer pruning loss function as:

L(W,Φ) = LD(W,Φ) + λrLs(Φ
r) (9)

where Ls(Φ
r) is the layer sparsity loss and λr is the La-

grangian multiplier. This enables the network to decide
what the depth should be and which branch can be skipped.
The combined loss for filter, layer and branch pruning can
then be defined as:

L(W,Φ) = LD(W,Φ)+λfLs(Φ
f )+λlLs(Φ

l)+λrLs(Φ
r)

(10)

3.4. Block Pruning

In our method the concept of block pruning is also very
similar to that of layer and branch pruning. Let us define a
multi-branched block as:

bl−1 = r1,l−1 : rk,l−1 (11)

In case of block pruning we also add shortcut connection
between blocks if they are not already present (e.g : incep-
tion) and a learnable scaling factor at the end of each block
such that the output of the entire block is multiplied with the
branch pruning parameter φb and can result in eliminating
the entire block. In such cases the input to the branch hl−1

can directly become input to the convolution layer immedi-
ately after the block as defined below

hl = f(bl−1)g(Φb
l , ε)) + hl−n (12)

We then extended the sparse dropout learning for block
pruning by defining a block pruning loss function as:

L(W,Φ) = LD(W,Φ) + λbLs(Φ
b) (13)

where Ls(Φ
b) is the layer sparsity loss and λb is the La-

grangian multiplier. This enables the network to decide
which blocks can be pruned. The combined loss for filter,
layer, branch and block pruning can then be defined as:

(14)L(W,Φ) = LD(W,Φ) + λfLs(Φ
f ) + λlLs(Φ

l)

+ λrLs(Φ
r) + λbLs(Φ

b).
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This results in a comprehensive pruning of a network which
is possible through our proposed approach. Furthermore, in
our proposed method it is not necessary to use all the prun-
ing strategies simultaneously, instead any of the 15 com-
binations can be used such as filter and branch pruning or
filter and layer and block pruning etc. For example on a se-
quential model one can implement filter pruning with one
regularizer and layer pruning with a different regularizer so
that the network is rewarded to prune both layers and filters
from the network. In other words our approach provides
15 different pruning strategies depending upon the network
design and application related needs.

4. Experimental Setup
4.1. Datasets

We evaluated our approach on three standard benchmark
datasets MNIST [13], Fashion MNIST [14] and CIFAR-
10 [12] . Both MNIST[13] and Fashion MNIST[14] are
small 10 class datasets having 60, 000 training and 10, 000
test samples of size 28× 28. MNIST is a handwitten digits
dataset, Fashion MNIST instead contains samples of appar-
els such as trouser, skirt, bag, ankle boot etc. The CIFAR-10
is another commonly used benchmarking dataset consisting
of 6000 and 600 colour images (resolution 32 × 32) per
class respectively including 1000 and 100 training samples
per class respectively. CIFAR-10 contains samples of 4 ve-
hicle and 6 animal classes 1.

4.2. Models

We tested our approach on VGG-16 [15] and ResNet-
56 [15] models which are commonly used in neural network
compression literature. In our experiments we used a cus-
tom VGG-16 model with three changes i) we used 0.05 L2
Norm applied to every trainable layer to fight weight infla-
tion problem caused by the network to mitigate the effect of
shrinking scaling factors, ii) we added BatchNorm layer af-
ter each trainable layer to increase training speed and iii) we
used a Dropout of 0.5 after 1st FC layer to prevent overfit-
ting. ResNet-56 is chosen as it is a multi-branched network
with ResBlocks on one branch and residual connection on
the other branch.

4.3. Baseline Accuracies

Before experimentation we ran all the datasets on both
models to achieve baseline accuracy. In the case of VGG-
16 we normalized our datasets and trained the base net-
work for 180 epochs, We used 128 as batch size, we chose
the best accuracy of these epochs as our baseline accuracy.
We achieved 89.27% , 98.10% and 92.75% for CIFAR-10,
MNIST and Fashion MNIST respectively.

1http://groups.csail.mit.edu/vision/TinyImages/

Table 1. Filter Pruning on VGG-16
Dataset Accuracy Params↓ % Flops↓
CIFAR-10 88.27% 83.05% 40.21%
MNIST 97.57% 97.36% 89.60%
Fashion MNIST 92.16% 92.95% 69.16%

For ResNet-56 we normalized data and trained the net-
work for 250 epochs, We used batch size of 32, We achived
92.75% 98.56% and 94.1% for CIFAR-10, MNIST and
Fashion MNIST respectively.

5. Results and Evaluation
5.1. Filter Pruning

We implemented our filter pruning strategy using scal-
ing factors on VGG-16. To do this we placed a scaling
factor pruning tensor vectors of shape (1× num of filters)
and range (0,1) in front of all convolution layers. We then
applied L1 regularization with (weight = 1/num of filters)
individually to all pruning tensor vectors and trained the
network for 100 epochs to estimate the parameter for each
pruning factor during training. After training the network
we empirically find the desired threshold for pruning fil-
ters and then pruned all the filters below that threshold us-
ing Keras-Surgeon2, we also remove all the pruning tensors
from the network. After obtaining this pruned network we
fine-tune it for 10 epochs to re-achieve accuracy.

The results of our filter pruning strategy on all three
datasets are shown in Table 1. Our results were compara-
ble to the state-of-the-art results, GAN pruning[42] which
achieved 82.2% compression vs our 83.05%. We noticed
that filters from all over the network were pruned, how-
ever we observed uneven distribution of filter pruning where
more filters were pruned from later layers as compared to
earlier layers. For e.g. from in the CIFAR-10 pruned net-
work only 6 and 2 filters were eliminated from first and
second convolution respectively whereas from last two lay-
ers 462 and 398 filters were pruned. There are two reasons
for this behavior i) VGG-16 has higher number of filters in
later layers as compared to earlier layers and ii) earlier lay-
ers capture low-level features which has wide-scale usage
across the network in extracting high-level features whereas
not all the high-level features are useful for the task at hand
which in this case is classification.

5.2. Layer Pruning

To examine our premise that pruning factors can prune
the depth of the network too we created a custom VGG-16
network which had residual connections across all layers
except at 4 cases of dimension mismatch. Although dimen-
sion mismatch can be handled via pooling and convolution

2https://github.com/BenWhetton/keras-surgeon
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Table 2. Table showing results of layer pruning on VGG-16
Dataset Accuracy % Params↓ %Flops↓
CIFAR-10 87.77% 52.16% 33.1%
MNIST 98.82% 87.62% 69.47%
Fashion MNIST 92.80% 87.62% 69.47%

by 1× 1× dl or by using mixed connections [26], however
for simplicity we chose not to handle the dimension mis-
match. In addition to this the nature of our original network
inherently had just 4 cases of dimension mismatch resulting
in significant room in the network to prune. After creat-
ing these residual connections we added a pruning factor in
front of all the layers with residual connections such that
the output of the current layer is multiplied to a pruning
factor before being added to the residual connection. We
then apply Regularization with weightage (1/total num of
prunable) to make these pruning factors sparse. Zeroing out
these pruning factors means removing that whole layer from
the network.

When we have our prunable model with additional resid-
ual connections and pruning factors, we train this network
for 100 epochs from scratch and estimate the parameter for
each pruning factor during training. After this step we em-
pirically find the pruning threshold and then remove layers
from the network along with all the pruning factors. We
then fine tune this network for 10 epochs to re-achieve de-
sired accuracy.

The results of our layer pruning strategy on CIFAR-10,
MNIST and Fashion MNIST are shown in Table 2.

5.3. Branch Pruning

In this work we also show that pruning of entire branch
can be pruned from a neural network by using scaling fac-
tors. For this experiment we chose ResNet-56 because it is a
multi-branched network, on one branch whole ResBlock is
present while the other branch contains residual connection
from previous block, both the branches merge after each
block. We placed scaling factors on ResBlock branches to
prune whole ResBlock from the network. We then trained
the network for 250 epochs on CIFAR-10 dataset on which
it reached over 91% accuracy while the accuracy of un-
pruned network is reported to be around 92%. After training
we empirically found the optimal threshold to prune the net-
work without losing accuracy. Our method drooped 17 out
of 27 ResBlocks. The results of branch pruning are shown
in Table 5 under the name Our B.

5.4. Simultaneous Pruning of Filters and Layers

In these experiments we applied scaling factors at two
different granularities, one on the filter level and other on
the layer level. To do this we used the same custom VGG-
16 with additional residual connections that we used in the

Table 3. Table showing results of simultaneous pruning of filters
and layers on VGG-16

Dataset Accuracy % Params↓ %Flops↓
CIFAR-10 88.11% 89.66% 57.79%
MNIST 97.48% 98.47% 89.95%
Fashion MNIST 92.10% 97.99% 83.44%

Table 4. Comparison of Filter Pruning and Filter and Layer Prun-
ing with state-of-the-art methods on CIFAR-10 dataset using
VGG-16 architecture. The table shows the change in overall num-
ber of flops, parameters and accuracy.

Pruning Accuracy Params↓ % Flops↓
GAN Pruning [35] ≈ 90% 82.2% 45.20%
Filter 88.27% 83.05% 40.21%
Filter+Layer 88.11% 89.66% 57.79%

Layer pruning experiment. We added filter pruning scal-
ing tensor vectors in front of all the conv layers similar to
ones used in the filter pruning experiment. Two differently
weighted regularizations were applied to the network (see
Eq. 6), one for filter pruning scaling factor tensor vectors
and one for layer pruning scaling factors. We then trained
this custom VGG-16 for 100 epochs.

After training we first searched for optimal thresholds for
both filters and layers, we then changed the values below
threshold to zero and above threshold to one. We then fine
tuned this network for 10-20 epochs. We did this because
in this experiment we removed all the pruning factors from
the networks so pruning factors should be either 0 or 1 for
the final pruning step, any value between (0,1) would mean
that scaling factor was providing scaling to corresponding
structure(e.g. filter, layers) but if we change these value to
either 0 which will mean removal of corresponding struc-
ture or 1 which will presence of the corresponding structure
without providing any scaling

After training we do the final pruning step where we first
prune layers, to do this we use the corresponding scaling
factor to either prune the layer or the residual connection,
we remove the residual connections too because we do not
want to have any foreign layer in the pruned network from
the original network. After pruning layers we prune filters.
We then fine tune the final network for 20 epochs, for this
experiment we need higher fine tuning because we removed
the residual connections which changes the network graph.

The results of combined filter and layer pruning are
shown in Table 3. In all of the experiments we re-achieved
baseline accuracy within 1% of margin.

5.5. Simultaneous Pruning of Layers and Branches

For this experiment we placed two pruning factors in the
ResBlock, one in front of the first layer and the other in front
of the whole ResBlock. We then trained this network for
250 epochs. After training we produced the pruned network
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Table 5. Comparison with state-of-the-art methods on CIFAR-10 dataset using ResNet-56 architecture. The table shows the change in
overall number of flops, parameters and accuracy.

Metric Li et al. [43] NISP [44] DCP-A [45] CP [46] AMC [47] C-SGD [48] GBN-40[49] GBN-30[49] Our B Our B+F
FLOPS ↓ % 27.6 43.6 47.1 50.0 50.0 60.8 60.1 70.3 63.78 79.00
Params ↓ % 13.7 42.6 70.3 - - - 53.5 66.7 59.52 78.14
Accuracy -0.02 0.03 -0.01 1 0.90 -0.23 -0.33 0.03 0.97 1.35

Table 6. Table showing results of simultaneous pruning of layers
and branches ResNet-56

Dataset Accuracy Params↓ % Flops↓
CIFAR-10 92.13% 69.52% 66.50%
MNIST 98.28% 81.19% 84.60%
Fashion MNIST 93.73% 74.15% 78.02%

in a similar fashion as done for layer block pruning. In this
experiment we didn’t remove the remaining scaling factors
from the network so no fine tuning was required.Baseline
accuracies are the same as stated . Results on all three
datasets for combined layer and block pruning is shown in
Table 6.

5.6. Simultaneous Pruning of Filters and Branch

Similar to filter and layer pruning we also attempted to
simultaneously prune filters and branches. In this exper-
iment we used branch pruning version of ResNet-56 and
added filter pruning to the first layer of each ResBlock. We
then trained this network for 250 epochs. After training we
produced the pruned network in a similar fashion as done
for layer branch pruning. We then froze all the layers in the
network except BatchNorm and Dense and fine tuned it for
30 epochs. We then remove filters from the network based
on pruning tensor values.

Results on the CIFAR-10 dataset are shown in Ta-
ble 7. Baseline accuracy of unpruned network on CIFAR-
10 dataset was 91% to 92% and the accuracy of our final
pruned network was within 1.5% margin of the baseline.

5.7. Comparison with State-of-the-art

We compared our proposed approach with nine different
state of the art methods namely Li et al. [43], NISP [44],
DCP-A [45], CP [46], AMC [47], C-SGD [48], GBN-
40 [49], GBN-30 [49] and GAN Pruning [35]. Table 4
shows the comparison with these methods on CIFAR-10
datasets on VGG-16 architecture. It shows the compari-
son of our filter pruning and filter and layer pruning tech-
niques vs. generative adversarial network [35]. Both our
techniques performed better than SOA without noticeable
loss in accuracy. Our filter and layer pruning resulted in

Table 7. Table showing results of simultaneous pruning of filters
and branches on ResNet-56

Dataset Accuracy % Params↓ %Flops↓
CIFAR-10 91.75% 78.14% 79.00%

an increase of 7.46% in parameter compression ratio and
12.59% increase in flop compression ratio.

Table 5 shows the comparison with these methods on
CIFAR-10 datasets on ResNet-56 architecture. It shows the
comparison of our block pruning and filter and block prun-
ing techniques. It can be seen that one of our methods is
second highest in terms of number of flops, third highest
in terms of number of parameter reduction but our second
method which is a combination of filter and layer prun-
ing, It can be seen that both our models performed worst
in maintaining accuracy, this is partly due to difference in
baseline accuracy between our experimentation and SOA
table [49], Our experimentation achieved 92.75% accuracy
but SOA [49] achieved 93.1% and these results are adjusted
to SOA baseline accuracy but our method performed better
then SOA in parameters and flops compression. We believe
that this drop in accuracy can be reduced by further fine
tuning the perimeters.

6. Conclusions and Future Work
In this work we presented an idea of comprehensive

pruning of neural networks which leverages from the idea
of dropout and residual shortcut connections. We pro-
pose pruning at 4 different granularities i.e. filter, lay-
ers, branch (sequence of layers) and blocks (multi-branch
blocks such as ResBlock, Inception-ResNet [50] or those
found in multi-task learning). Our pruning strategy is based
on introducing learnable scaling factors at these granulari-
ties, these parameters are learned in an online manner dur-
ing training and helps in generating a pruned network. In
our case instead of using filter pruning as a proxy for layer
pruning, we instead model pruning at different granularities
by introducing separate sparsity loss for each of the granu-
larity.

We showed results on pruning at different granulari-
ties as well as their multiple combinations. We showed
that by explicitly modeling pruning at these granularities,
the network tries to increase the level of pruning without
significant loss in accuracy. In future we aim to extend
our scope of analysis to bigger datasets such as CIFAR-
100 and on more complicated networks such as Inception-
ResNets [50]. We will also be analysing the effect of using
different schemes of regularizations to identify the best at
each granularity.
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