
SELF-ORGANIZED RESIDUAL BLOCKS FOR IMAGE SUPER-RESOLUTION
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ABSTRACT

It has become a standard practice to use the convolutional net-
works (ConvNet) with RELU non-linearity in image restora-
tion and super-resolution (SR). Although the universal ap-
proximation theorem states that a multi-layer neural network
can approximate any non-linear function with the desired
precision, it does not reveal the best network architecture to
do so. Recently, operational neural networks (ONNs) that
choose the best non-linearity from a set of alternatives, and
their “self-organized” variants (Self-ONN) that approximate
any non-linearity via Taylor series have been proposed to
address the well-known limitations and drawbacks of con-
ventional ConvNets such as network homogeneity using only
the McCulloch-Pitts neuron model. In this paper, we propose
the concept of self-organized operational residual (SOR)
blocks, and present hybrid network architectures combining
regular residual and SOR blocks to strike a balance between
the benefits of stronger non-linearity and the overall number
of parameters. The experimental results demonstrate that
the proposed architectures yield performance improvements
in both PSNR and perceptual metrics.

Index Terms— Convolutional networks, self-organized
networks, operational neural networks, generative neurons,
Taylor/Maclaurin series, hybrid networks, super-resolution

1. INTRODUCTION

The widely popular convolutional networks (ConvNet) [1] are
built using the McCulloch-Pitts neuron model with the com-
monly used rectified linear unit (RELU) activation. The uni-
versal approximation theorem (UAT) [2, 3] states that any
non-linear function can be approximated by a multi-layer
network with the desired accuracy. However, it is only an ex-
istence theorem and does not provide network architectures
with performance guarantees. Since the common neuron
model performs only linear transformations with a simple
non-linear activation, many such neurons may be needed for
a sufficiently good approximation, and an architecture with
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a given number of layers and channels may not satisfy the
performance requirements of a particular problem at hand.

To boost the learning capability with more powerful net-
work models, operational neural networks (ONN) [4], based
on generalized operational perceptron (GOP) [5–9], and self-
organized ONNs (Self-ONNs) [10, 11] based on generative
neuron model have recently been proposed. The main idea
in both models is to make the network learn the best non-
linear kernel transformation. While conventional ONNs have
to search for the best transformation from a pre-determined
operator set library, Self-ONNs can approximate the best ker-
nel transformation by a Taylor series expansion of the desired
order. It has been noted that exhaustive search makes the use
of ONNs expensive [4,10]; hence, Self-ONNs have become a
more promising and computationally efficient network archi-
tecture.

In this paper, we explore the use of self-organized layers
for image super-resolution (SR) and compare its performance
with the popular EDSR residual ConvNet architecture [12].
The rest of the paper is organized as follows: We review
EDSR and Self-ONN architectures in Section 2. We intro-
duce self-organized residual (SOR) blocks and network ar-
chitectures with SOR blocks in Section 3. In Section 4, we
present the experimental results over the benchmark dataset.
Section 5 concludes the paper.

2. RELATED WORK

Self-ONN is a recent network architecture [10,11]. In the fol-
lowing, we briefly review the popular convolutional residual
network architectures for image SR and the foundations of
Self-ONN, which constitute the background for paper.

2.1. Convolutional Super-Resolution Networks

The most popular convolutional single image SR architec-
tures are the enhanced deep super-resolution (EDSR) [12] and
residual channel attention networks (RCAN) [13]. The base-
line EDSR model uses 16 residual blocks [14] with 64 chan-
nels each, and a pixelshuffler layer [15] for upsampling.
RCAN uses a residual in residual (RIR) structure, which
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Fig. 1: Illustration of a generative neuron for q = 3.

consists of several residual groups with long skip connec-
tions. RIR allows low-frequency information to be bypassed
through skip connections, making the network focus on learn-
ing high-frequency information. Although RCAN yields
slightly better results compared to EDSR, in our hybrid net-
work we employ EDSR residual blocks due to its simplicity.

2.2. Generative Neurons and Self Organized Networks

A Self-ONN layer is formed by generative neurons. A gen-
erative neuron approximates a non-linear function f(x) by a
Taylor series expansion

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n (1)

around the point a. If we truncate the series to q terms,
we have the approximation g(w, x, a) given by

g(w, x, a) = w0 + w1(x− a) + · · ·+ wq(x− a)q (2)

where

wn =
f (n)(a)

n!
. (3)

For a c-channel input tensor, the parameters wn, n = 1, . . . , q
denote q banks of c-channel convolution kernels and w0 de-
notes a bias. These parameters can be learned by the classical
back-propagation algorithm.

A generative neuron with 3×3 kernels, a = 0, q = 3, and
activation function σ() is illustrated in Figure 1. Each neu-
ron takes c-channels as input and outputs a single channel.
The activation function limits outputs within a range about
the value a before they are input to the next neuron, since
the Taylor series is expanded around a. So, for a = 0.5,
σ() can be taken as sigmoid bounding the output in the
range [0 1], or if a = 0, σ() can be tanh(x) to bound the
outputs in the range [−1 1]. We note that if we choose q = 1
and a = 0, the generative neuron model reduces to the classic
convolutional neuron.
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Fig. 2: Illustration of SOR block.

3. NETWORKS WITH SELF-ORGANIZED
RESIDUAL BLOCKS

We first introduce self-organized residual blocks in Sec-
tion 3.1. We then present network architectures for image SR
with self-organized residual blocks in Section 3.2. Details of
training procedures are discussed in Section 3.3.

3.1. Self-Organized Residual Blocks

A self-organized residual (SOR) block can be obtained by re-
placing all regular convolutional layers in a residual block by
Self-ONN layers. In analogy with the EDSR residual blocks,
we define a Self-ONN layer (SOL) without the activation
function σ() in the generative neuron to replace standard
convolutional layers and use the activation function σ() as
a separate layer. Figure 2 depicts a SOR block consisting
of SOL, activation function and SOL, and another activation
function after the summation.

Likewise, using SOR blocks in place of regular convolu-
tional residual blocks, any ConvNet architecture with residual
blocks, e.g., RCAN, can be transformed into a self-organized
residual network architecture. The main advantage of SOR
blocks over standard residual blocks is that we can obtain bet-
ter performance with a fewer number of blocks, which will be
demonstrated in Section 4.

3.2. Self-Organized Residual Network Architectures

We choose the EDSR baseline model, which has 16 residual
blocks with 64 channels (McCulloch-Pitts neurons) each, de-
picted in Fig 3, as our starting architecture. In the following,
we propose two alternative network architectures for super-
resolution (SR), one using only SOR blocks and another us-
ing a combination of regular residual blocks and SOR blocks
in order to evaluate their performance compared with that of
the EDSR network.

3.2.1. Self-ONN with the EDSR Architecture

We propose to replace all EDSR residual blocks with SOR
blocks, and the input and output convolution layers, includ-
ing those in the upsampling layer, with self-organized layers.
The main advantage of this Self-ONN is using less number of
blocks than the original EDSR. The performance of the Self-
ONN for different number of SOR blocks and neurons per
SOL is investigated in Table 1.
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Fig. 3: The EDSR network architecture. We replace only the residual blocks in the gray box with SOR blocks in the hybrid
architecture. We also replace the regular convolutional layers in the Upsampler with self-organizing layers.

3.2.2. Hybrid Network with EDSR and SOR Blocks

We next design a hybrid network with both EDSR and SOR
blocks to evaluate whether combining some regular residual
blocks and SOR blocks would improve performance. For this
purpose, we replaced 4 of the EDSR residual blocks in Fig-
ure 3 with SOR blocks. The evaluation of the effect of which
blocks to replace is shown in Table 2.

3.3. Training Details

We use the DIV2K dataset with 800 training images as our
training set [16]. We normalize input images to the range
[0, 1] and then subtract the mean of R, G and B channels of
all images in the training set from each R, G and B image,
respectively, during training and tests [12].

The training is iteration based, and we use the same proce-
dure for all architectures evaluated: We take 48× 48 patches
from low-resolution images and their corresponding regions
in high-resolution images similar to [12]. The mini-batch size
is 16. At each iteration, we select 16 images and locations of
the patches within images randomly. In addition, each patch
is subject to a random rotation of 0, 90, 180 and 270 degrees
for data augmentation.

We minimize l1 loss for 300K iterations using Adam op-
timizer [17] with β1 = 0.9, β2 = 0.999 and ε = 10−8.
The learning rate for EDSR (baseline) is 10−4, and is halved
after 200K iterations. For Self-ONNs and hybrid (EDSR +
SOLs) architectures, the initial learning rate is 1.5 × 10−4,
and it is halved after each 100K iterations.

We train ×2 SR networks with random initialization,
while ×4 SR networks are trained in two alternative ways:
random initialization (Random), and fine-tuning a pre-trained
(Pre-T) ×2 SR network, except for the upsampling layer,
which is randomly initialized.

4. EVALUATION

Evaluations are performed on 100 validation images from
the DIV2K dataset for both ×2 and ×4 SR with bicubic
downsampling.

4.1. Evaluation of Self-ONN Hyperparameters

We first evaluate the effect of the number of SOR blocks and
number of neurons (channels) in each SOL on the perfor-
mance of Self-ONN with a base configuration, where q = 3
for the SOR blocks and the upsampling/output layers.

Table 1: Self-ONN performance by hyperparameters.

Blocks (chan) 4 (32) 4 (64) 8 (32) 8 (64)
PSNR 34.148 34.424 34.377 34.616
SSIM 0.9608 0.9624 0.9621 0.9635

Parameters 365,059 1,448,963 586,499 2,334,311

The quantitative performance is measured in terms of
PSNR and SSIM metrics. The test results with 4 or 8 SOR
blocks and 32 or 64 neurons per layer are presented in Ta-
ble 1. Clearly, the model with more SOR blocks yields better
performance. The performance also increases with increasing
number of neurons when the number of blocks are the same.

4.2. Evaluation of Hybrid Architecture

In the hybrid architecture, we consider replacing some resid-
ual blocks and all upsampling/output layers in the EDSR ar-
chitecture with the proposed SOR blocks and SOL, respec-
tively. To this effect, we conduct experiments to test whether
to replace the first or last 4 residual blocks with SOR blocks
(q = 3) and also whether to replace the upsampling/output
layers with SOL (q = 3) or not in the case of ×2 SR.

Table 2: Searching for the best hybrid network architecture.

SOR blocks First 4 Last 4
UpS/Out layers Conv SOL Conv SOL

PSNR 34.565 34.612 34.631 34.658
SSIM 0.9632 0.9635 0.9636 0.9638

The results in Table 2 indicate that replacing the last
4 blocks with SOR blocks and replacing the upsampling and
output layers with SOL yield the best results.

4.3. Comparative Results

Based on the results in Tables 1 and 2, we compare the perfor-
mances of i) Self-ONN with 8 SOR blocks and using SOL in



Table 3: Quantitative performance evaluation of the proposed models.

Metric
Method EDSR (baseline) Self-ONN (8 SOR-64 + SOL UpS) EDSR-12 + 4 SOR + SOL UpS

×2 ×4 ×2 ×4 ×2 ×4
Random Pre-T Random Pre-T Random Pre-T

PSNR ↑ 34.557 28.924 28.970 34.616 28.983 29.016 34.658 29.018 29.064
SSIM ↑ 0.9632 0.8857 0.8866 0.9635 0.8871 0.8875 0.9638 0.8877 0.8886
LPIPS ↓ 0.0896 0.2775 0.2747 0.0873 0.2742 0.2714 0.0890 0.2726 0.2694

Ground Truth Hybrid EDSR

Fig. 4: Visual comparison of the EDSR baseline and hybrid
network architecture with fine-tuned pre-trained model.

upsampling and output layers, and ii) the hybrid architecture,
where the last four blocks are SOR blocks and upsampling
and output layers are SOL with that of the EDSR baseline
model in Table 3. All residual/SOR blocks in all networks
have 64 channels. We set q = 3 for all SOL layers in the
SOR blocks and upsampling/output layers in order to keep the
number of parameters in all models approximately the same.
In this study, we trained the EDSR network without using the
geometric ensemble strategy adopted in [12].

We compare the performance of the proposed models with
that of the EDSR baseline model using PSNR and SSIM mea-
sures. We also present LPIPS scores [18], which recently
have been shown to correlate with human visual preferences.
The arrows (↑) and (↓) next to the measures indicate whether
a high or low value shows better performance, respectively.

Inspection of Table 3 indicates that both pure and hybrid
Self-ONN models outperform the EDSR model in all quanti-
tative metrics and in visual quality. The PSNR difference can
be as much as 0.1 dB. Example visual comparison results in
×4 SR with randomly initialized and pre-trained models are
shown in Figure 5 and Figure 4, respectively. We observe that
the hybrid model, where we employ 12 regular residual and 4
SOR blocks and SOL for the upsampler layers, outperforms
the pure Self-ONN with 8 SOR blocks although both model
have approximately the same number (2.3 million for x2 SR
and 2.7 million for x4 SR) of parameters.

Ground Truth Self-ONN EDSR

Fig. 5: Visual comparison of EDSR baseline and Self-ONN
trained with random initialization for ×4 SR.

5. CONCLUSION

Self-ONNs achieve the ultimate level of network heterogene-
ity and expressive power whilst maximizing the network di-
versity along with computational efficiency, thanks to the gen-
erative neurons that have the ability to adapt the desired trans-
formation function for each connection during training. In
this paper, we propose pure and hybrid Self-ONN architec-
tures with self-organized residual (SOR) blocks, which are
composed of self-organized layers (SOL), and show that they
outperform conventional convolutional networks in the single
image super-resolution task.

While a SOL of order q has approximately q times more
learnable parameters compared to a conventional convolu-
tional block, it is important to note that a Self-ONN with
8 layers already exceeds the performance of EDSR with 16
layers. Since computations for each layer can be fully par-
allelized, the execution time of a network is proportional to
the number of layers. Hence, Self-ONNs can achieve better
performance faster than ConvNets.

Our experiments demonstrate that both pure and hybrid
Self-ONNs exceed the state-of-the-art SR performance of the
popular EDSR network. The results also show that the hybrid
model with 12 regular residual blocks and 4 SOR blocks and
SOL for upsampler layers outperforms the pure Self-ONN
model with 8 SOR blocks, where both models have approxi-
mately the same number of parameters.
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