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2Institut National Des Télécommunications et TIC, Oran, Algeria

ABSTRACT
Human vision is naturally more attracted by some regions within
their field of view than others. This intrinsic selectivity mecha-
nism, so-called visual attention, is influenced by both high- and low-
level factors; such as the global environment (illumination, back-
ground texture, etc.), stimulus characteristics (color, intensity, orien-
tation, etc.), and some prior visual information. Visual attention is
useful for many computer vision applications such as image com-
pression, recognition, and captioning. In this paper, we propose an
end-to-end deep-based method, so-called SALYPATH (SALiencY
and scanPATH), that efficiently predicts the scanpath of an image
through features of a saliency model. The idea is predict the scan-
path by exploiting the capacity of a deep-based model to predict the
saliency. The proposed method was evaluated through 2 well-known
datasets. The results obtained showed the relevance of the proposed
framework comparing to state-of-the-art models.

Index Terms— Visual attention, eye movement, saliency, scan-
path prediction

1. INTRODUCTION

Human vision is naturally more attracted by some regions within
their field of view than others. This natural selectivity mechanism,
so-called visual attention, is influenced by both high- and low-level
factors; such as the global environment (illumination, background
texture, etc.), stimulus characteristics (color, intensity, orientation,
etc.), and some prior visual information [1]. It gives the Human Vi-
sual System (HVS) an astonishing efficiency for detection and recog-
nition through rapid eye movements called saccades. Predicting vi-
sual attention became a staple to improve many image processing
and computer vision applications such as indoor localization [2], im-
age quality [3, 4, 5, 6], image watermarking [7], image compression,
recognition, and captioning. Visual attention is usually depicted us-
ing 2D heat maps, often called saliency maps, representing the most
spatial-attractive regions in a given stimulus. The sequential repre-
sentation of the points follows during the exploration of the image,
also called scanpath, is used to derive saliency maps.

Researchers put a lot of efforts in predicting such saliency heat
maps, starting with the seminal work of Koch and Ulman [8], later
followed by Itti et al. [9] where multi-scale low level features were
used. In [10], the saliency is predicted based on the graph theory
where Markov chains is defined over different input maps. Sev-
eral other interesting saliency models have been proposed based on
heuristic approaches and low level features [11] [12].

With the recent success of deep learning, many deep-based
saliency models have been developed. Pan et al. [13] proposed one
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of the first Convolutional Neural Network (CNN) models where a
deep and shallow networks were used. In [14], the authors proposed
a deep convolutional Generative Adversarial Network (GAN) based
saliency model with adversarial training. In [15], the authors intro-
duced a method called DeepGaze I where they trained an AlexNet
[16] based network on MIT dataset. The authors later introduced
a new version, called DeepGazeII [17], where a VGG-19 network
[18] was exploited. In [19], the authors proposed a more complex
architecture where multi level features extracted from a VGG [18]
network were employed. In [20], the authors designed a method to
predict the saliency by incorporating an attention mechanism based
on the combination of Long Short Term Memory (LSTM) and con-
volutional networks. In [21], the authors proposed a unified model
for saliency prediction, called Unisal, that predicts the saliency for
images and videos.

Contrary to the large number of saliency models proposed in
the literature, the studies dedicated to the prediction of scanpath
are less extensive. In [22], the authors proposed a model where
visual scanpaths are inferred stochastically from saliency maps as
well as saccadic amplitudes and orientation biases derived from sev-
eral datasets. In [23], the authors proposed a deep model, called
Saltinet, that samples the saccades from a predicted static saliency
volume generated by a CNN encoder-decoder network. The authors
later proposed a saliency model, called PathGan [24], that predicts
scanpath by using LSTM layers and a VGG network with adver-
sarial training. The underlying idea of using LSTM was to predict
the current fixation point according to the previous ones to increase
the sequential dependence between fixations. In [25], the authors
presented a model of scanpath as a dynamic process simulating the
laws of gravitational mechanics. The gaze is considered as traveling
mass point in the image space, and salient regions as gravitational
fields affecting the mass speed and trajectory. In [26], the authors
proposed a Deep Convolutional Saccadic Model (DCSM) where the
fixation points are predicted from foviated saliency maps and tem-
poral duration while modeling the inhibition of return.

In this study, we propose an end-to-end deep-based method,
called SALYPATH (SALiencY and scanPATH), that efficiently pre-
dicts the scanpath of images by leveraging features from a trained
saliency model. The idea is to predict the scanpath of a given im-
age by exploiting the capacity of a deep-based model to predict
the saliency. Inspired by SalGan [14], we first construct a saliency
model that integrates an attention module. Feature maps are then ex-
tracted from the designed saliency model and fed as input to a second
CNN model that aims to predict the scanpath of the image.

The rest of the paper is organized as follows: Section 2 describes
the proposed method in details. We then discuss the results obtained
in Section 3. Finally, we provide some conclusions in Section 4.
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Fig. 1. SALYPATH: SALiencY and scanPATH prediction model

2. PROPOSED METHOD

As illustrated by Fig. 1, we propose a novel fully convolutional neu-
ral network architecture for predicting saliency and scanpath of static
natural images. Our model is composed of a VGG-based encoder as
well as two predictor networks to predict the corresponding saliency
and scanpath, respectively. An attention module is also used to adap-
tively refine the features extracted from the encoder part. Each part
of the proposed model is described in this section.

2.1. Saliency Prediction

In order to predict the scanpath of a given image, we design a
deep-based saliency model. The idea is to predict the scanpath of
a given image by exploiting high level features of a deep-based
saliency model. The proposed model is constituted by a VGG-based
encoder-decoder similar to the generator part of SalGan [14]. The
encoder part is composed of (3x3) convolutional layers and (2x2)
max-pooling layers, while the decoder part is composed of (3x3)
convolutions and (2x2) up-sampling layers with a (1x1) final convo-
lutional layer activated by a Sigmoid function. The encoder aims to
generate high dimensional feature maps from the input image by ag-
gregating them on multiple levels, while decoder aims to merge the
obtained feature maps to a single image that represents the saliency
map.

2.2. Scanpath Prediction

From the model’s bottle-neck, we extract the high level representa-
tional features to predict the scanpath through a fully convolutional
network. It is composed of 10 convolutional layers while gradually
decreasing the depth of the feature maps to 8 channels, correspond-
ing to the length of the predicted scanpath. The latter has been fixed
according to a statistical analysis of the lengths of scanpaths pro-
vided by the dataset used to train our model (see Section 3.1). The
central tendency indicates that a length of 8 fixation points is appro-
priate. The output of our fully convolutional network is then fed to a
Soft-ArgMax (SAM) [27] function which returns the coordinates of
the highest activation point for each feature map as follows:

SAM(x) =

W∑
i=0

H∑
j=0

eβxi,j∑W
i′=0

∑H
j′=0 e

βxi′,j′
(
i

W
,
j

H
)T (1)

where i, j, i′, j′ iterate over pixel coordinates and H,W represent
the height and width of the feature map, respectively. x is the input
feature map and β is a parameter adjusting the distribution of the
softmax output.

It is worth noting that unlike the discrete ArgMax, the Soft-
ArgMax function is differentiable. It also allows a sub-pixel regres-
sion, thus providing a better prediction even with smaller feature
maps passed on the scanpath prediction model.

2.3. Attention Module

In other fields of computer vision, attention is an approach for at-
tending to different parts of an input vector to capture a global rep-
resentation of features. It has been proven that adding such modules
allows to refine intermediate features and thus improve the global
performance [28] [29]. Thanks to this specificity, an attention mod-
ule has been here incorporated to improve the feature representa-
tion used to predict both saliency and scanpath. More precisely, we
employed the Convolutional Block Attention Module (CBAM) [30]
which is composed of 2 blocks as shown in the attention module
box in Fig.1. The channel attention block exploits the interrelations
between feature maps and outputs a channel-wise weighted feature
vector emphasizing the more important features in relation to the
task. While the spatial attention block calculates the importance of
features according to their spatial position emphasizing the most im-
portant location in each high-level feature. The attention module is
used in parallel to the stream between encoder and decoder at the
bottle-neck. The output of the module is represented by the follow-
ing equation:

z = X ⊗AttS(X ⊗AttCh(X)) (2)

where z is the output of the module, AttS and AttCh are the spatial
attention and the channel attention blocks, respectively. X is the
input feature maps and⊗ represents the element-wise multiplication.

The inputX ′ of the decoder and the fully convolutional network
branches is then computed as follows:

X ′ = X + z ⊗ γ (3)

where γ is a learnable parameter.

2.4. Training

Two different loss functions have been used to train each branch of
our model. The saliency branch was trained using the following loss



Model Auc Judd ↑ Auc Borji↑ NSS↑ CC↑ SIM↑ KLD ↓
Salgan[14] 0.8662 0.8443 1.9460 0.5836 0.4908 1.0470
Salicon[31] 0.8630 0.8135 2.1240 0.6013 0.4923 0.9051
MLNet[19] 0.8509 0.7714 2.1678 0.5787 0.4815 1.3083

SALYPATH (Our method) 0.8745 0.8290 2.1152 0.6182 0.4982 0.8750

Table 1. Results of saliency prediction on MIT1003.

function L1:

L1 = 0.6×KLdiv(y, ŷ) + 0.3×MSE(y, ŷ)

−0.1×NSS(y, ŷ)
(4)

where KLdiv is the Kullback-Leibler Divergence, MSE is the
Mean Squared Error and NSS is Normalized Scanpath Saliency. y
and ŷ are the predicted and the ground truth saliency maps, respec-
tively.

Each term of the designed loss function has its own impact on
the convergence of our model [32]. Indeed, KLdiv function aims to
compare the distributions of the output and the corresponding ground
truth, while MSE function regularizes the loss by comparing the
predicted saliency map and its corresponding ground truth on pixel
level [33]. We also introduced the NSS value which is usually used
as metric to evaluate saliency prediction [34]. It allows to capture
several properties that are specific to saliency maps. This branch
was trained with a learning rate of 10−7 and a step LR scheduler
with a multiplicative factor of 0.9 per epoch.

The scanpath branch was trained using only the MSE as loss
function L2 (see eq. 5). It was used since scanpath prediction are
characterized by the locations of their fixation points and thus their
prediction can be seen as a regression problem. It worth noting that
the scanpaths are predicted through features of the designed saliency
model. To better predict the scanpath, we here focused more on im-
proving the intermediate representational space, optimized through
the more complex saliency loss function L1 (see eq. 4). This branch
was trained with a learning rate of 10−5 and a step LR scheduler
with a multiplicative factor of 0.9 per epoch.

L2 =
1

N

∑
i

(p− p̂)2 (5)

where p is the predicted scanpath and p̂ is the ground truth scanpath,
while N is the number of the fixation points.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the capacity of our method to predict the
scanpath of a given image. After presenting the datasets used, the
saliency prediction branch as well as the scanpath prediction branch
are evaluated. Both are also compared to a set of representative state-
of-the-art methods.

3.1. Datasets

In order to evaluate of our method, two widely used datasets have
been employed: Salicon [35] and MIT1003 [36]. Salicon dataset is
the largest natural image saliency dataset and it was built for the Sal-
icon challenge. More precisely, we used a subset of 15000 images
from the dataset for training (i.e. 9000), validation (i.e. 1000) and
testing (i.e. 5000). MIT1003 dataset is one of the most used natu-
ral image saliency datasets and it was employed during the MIT300
challenge[37]. It is composed of 1003 natural images with their
corresponding saliency maps and scanpaths. The whole dataset has
been considered in this study for cross-dataset testing.

3.2. Saliency Prediction

In this section, we evaluate the saliency prediction branch us-
ing common metrics [38]: Area Under Curve Judd (Auc Judd),
Auc Borji, NSS, Correlation coefficient (CC), Similarity (SIM )
and kullback Leibler Divergence (KLD). Table 1 shows the results
obtained on the MIT1003 dataset. The results obtained are also
compared to some state-of-the-art saliency models (i.e. Salgan [14],
Salicon [35] and MLNet [19]). As can be seen, our model achieves
the best results compared to the other models in 4 different metrics
including Auc Judd, CC, SIM , and KLD. In particular, we
obtain a significant improvement in terms of KLD compared to
Salgan and MLNet.We reach close second place to SalGan in terms
of Auc Borji metric, while the obtained NSS values are close to
Salicon and MLNet.

3.3. Scanpath Prediction
In order to evaluate the performance of the scanpath prediction
branch, three metrics have been used:

• MultiMatch (MM) [39]: It compares the scanpaths through
multiple criteria scores (i.e. shape of the vectors, the differ-
ence in direction and angles between saccades, the length of
the saccades, the position of the fixation points and duration
between fixation points). In this study, only the first four cri-
teria have been considered since the temporal aspect has not
been yet integrated.

• NSS [34]: It compares a fixation map generated from the pre-
dicted fixation points with the ground truth saliency map.

• Congruency [40]: It measures the percentage of predicted fix-
ation points within a thresholded saliency map.

Table 2 shows the results obtained on Salicon dataset. Our re-
sults are also compared to a set of representative state-of-the-art
methods, including handcrafted-based models (i.e. Le Meur[22] and
G-Eymol [25]) and deep learning-based models (i.e. PathGan [24],
DCSM-VGG and DCSM-ResNet [26]). As can be seen, our model
achieves the highest values for the shape and direction criteria of the
MultiMatch metric. It obtains a very close score to PathGan and
G-Eymol on the length and the position criteria, respectively. How-
ever, our model obtains the state-of-art results on the mean score.
For NSS, our model achieves the third place behind Le Meur and G-
Eymol. However, this result can be justified by the fact that models
like Le Meur use a predicted saliency map to predict fixation points
and thus the fixation points are generally within the salient regions.
For the Congruency, our model obtains the second best result close
to Le Meur.

Table 3 shows the results obtained on MIT1003 dataset which is
used as a neutral comparison dataset (i.e. we did not fine-tune our
model on it). For MultiMatch metrics, our model scores the highest
on the shape and direction criteria, while it achieves a very close
second place on the length criterion just behind Le Meur. For the
position criterion, our model achieves a better score than Le Meur



Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan[24] 0.9608 0.5698 0.9530 0.8172 0.8252 -0.2904 0.0825
Le Meur[22] 0.9505 0.6231 0.9488 0.8605 0.8457 0.8780 0.4784
G-Eymol[25] 0.9338 0.6271 0.9521 0.8967 0,8524 0.8727 0.3449

SALYPATH (Our method) 0.9659 0.6275 0.9521 0.8965 0,8605 0.3472 0.4572

Table 2. Results of scanpath prediction on Salicon.

Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan[24] 0.9237 0.5630 0.8929 0.8124 0.7561 -0.2750 0.0209

DCSM (VGG)[26] 0.8720 0.6420 0.8730 0.8160 0,8007 - -
DCSM (ResNet)[26] 0.8780 0.5890 0.8580 0.8220 0,7868 - -

Le Meur[22] 0.9241 0.6378 0.9171 0.7749 0,8135 0.8508 0.1974
G-Eymol[25] 0.8885 0.5954 0.8580 0.7800 0,7805 0.8700 0.1105

SALYPATH (Our method) 0.9363 0.6507 0.9046 0.7983 0,8225 0.1595 0.0916

Table 3. Results of scanpath prediction on MIT1003.

Stimuli Ground truth saliency map Predicted saliency map Ground truth scanpath Predicted scanpath

Fig. 2. Results of scanpath and saliency maps on MIT1003.

and G-Eymol, and reasonably close score to PathGan and DSCM-
VGG. We still obtain the best overall score for the mean MultiMatch
metric. For NSS and Congurency, our method obtains a lower score
than Le Meur and G-Eymol but still outperforms PathGan.

In Fig 2, we present scanpaths and saliency maps generated by
our model as well as their corresponding ground truth scanpaths and
saliency maps for two natural images of the MIT1003 dataset. As
can be seen, the visualization demonstrates the efficiency of our
model for both branches.

4. CONCLUSION

In this paper, we proposed a novel fully convolutional neural network
architecture for predicting saliency and scanpaths of natural images.
Our model is composed of an encoder-decoder to predict the saliency
and a second branch from which the scanpath is predicted. The lat-
ter takes advantage of the features provided at the bottle-neck of the
designed saliency model. An attention module was also used to re-
fine the image encoded feature space, improving thus the saliency
and scanpath prediction. The proposed model outperformed a good
representative set of state-of-the-art models for saliency and scan-
path prediction on both MIT1003 and Salicon datasets. Besides the
quantitative comparison, the qualitative results prove the effective-
ness of our model.

As future work, we plan to integrate the temporal dimension. We
will also modify the loss function used to train the scanpath predic-
tion branch in order to consider the saliency and the interdependence
between both saliency and fixation points. Finally, we will test more
advanced architectures instead of VGG.
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