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ABSTRACT

Mapping and 3D detection are two major issues in vision-
based robotics, and self-driving. While previous works only
focus on each task separately, we present an innovative and
efficient multi-task deep learning framework (SM3D) for Si-
multaneous Mapping and 3D Detection by bridging the gap
with robust depth estimation and “Pseudo-Lidar” point cloud
for the first time. The Mapping module takes consecutive
monocular frames to generate depth and pose estimation.
In 3D Detection module, the depth estimation is projected
into 3D space to generate “Pseudo-Lidar” point cloud, where
Lidar-based 3D detector can be leveraged on point cloud for
vehicular 3D detection and localization. By end-to-end train-
ing of both modules, the proposed mapping and 3D detection
method outperforms the state-of-the-art baseline by 10.0%
and 13.2% in accuracy, respectively. While achieving better
accuracy, our monocular multi-task SM3D is more than 2
times faster than pure stereo 3D detector, and 18.3% faster
than using two modules separately.

Index Terms— SM3D, Monocular Mapping, Monocular
3D detection, Pseudo-Lidar, Depth Estimation

1. INTRODUCTION

Traditional mapping and visual odometry strategies are
mostly based on SLAM [}, 2] (Simultaneous Localization
and Mapping) algorithm, which is well-known for simultane-
ously perceiving surrounding environments and keeping track
of the ego motion. However, traditional SLAM requires ubig-
uitous sensors, expensive depth cameras which are not only
high-cost but also computationally expensive. SFM (Struc-
ture from motion) is a good alternative to SLAM, using only
consecutive image snippets. Using an elegant self-supervised
learning style, SFM Learner[3] jointly trains the depth model
and pose model with photo-consistency loss between target
and warped images. Monodepth2[4] introduces SSIM[3] in
SFM to enforce photometric consistency, filtering out lighting
changes and imaging noises. Similarly, [6] adds perceptual
loss by calculating the pixel-wise CNN features. Since learn-
ing of mapping by scene flow assumes that the background
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is completely rigid, many supervised methods design seg-
mentation mask to eliminate dynamic objects [7, |8]], while
unsupervised methods rely on “soft mask” by adding opti-
cal self-supervision in the training process. DF-Net[9] uses
a pretrained optical flow network to segment non-rigid ob-
jects, while GeoNet[10] employs a subsequent module to
compensate for the final predicted motion estimation.

Existing 3D detection algorithms mostly use 2D-3D pro-
totypes [[L1, [12} [13], which are based on 2D object detection,
where different geometric constraints are imposed to project
2D proposals to 3D. Although these approaches give reason-
able 3D proposals, they lack in producing accurate 3D loca-
tion. Alternatively, Lidar-based methods [14} [15] [16] are far
more accurate than state-of-the-art 2D-3D prototypes. Simi-
lar to mapping, latest detection works try to eliminate expen-
sive Lidar, Radar, and depth camera, by using only images.
The Lidar-based detection prototype could be directly applied
to images by depth estimation, which saves the cost on de-
vice and maintains high accuracy. Based on the experimental
results, we inherit the Lidar-based style and use monocular-
based depth for end-to-end training which further improve
the performances over state-of-the-art monocular-based mod-
els while achieve much higher efficiency compared to stereo-
based models [17,[18]].

Since the previous works estimate the ego-map and 3D
detection separately, they ignore the potential to efficiently
integrate a multi-task model. Our key contributions can be
briefly summarized as follows:

* We propose a multi-task framework that only takes
monocular inputs to estimate ego-map and 3D detec-
tion simultaneously by bridging the gap with robust depth
estimation and Pseudo-Lidar generation.

* We derive and impose a novel pose-consistency loss in the
end-to-end self-supervised training for Mapping Module
while keeping the efficiency in testing, which significantly
boosts the mapping performance.

* To the best of our knowledge, this work is the first work
that uses monocular input to successfully train a 3D detec-
tor end-to-end. The resulting 3D Detection module out-
performs the state-of-the-art 3D detectors with monocular
inputs.
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Fig. 1: Overview of our SM3D. Mapping Module: Jointly learning and estimating depth and pose. 3D Detection Module:

Jointly learning and estimating depth and 3D detection. Input: Monocular snippet. Output: Mapping/3D Detection & Location.

2. SM3D FRAMEWORK

In this section, we present the proposed SM3D network with
Mapping and 3D detection modules (See Fig. 1). The input is
real-time monocular snippet of consecutive frames, the out-
puts are real-time ego-map to the current frame and 3D object
detection/localization of the current frame.

2.1. Mapping Module

We design our Mapping Module following the success of the
concurrent SFM works, which use a similar prototype based
on the baseline SFM Learner[3]]. This module takes a snippet
of consecutive monocular frames, jointly trains a depth and
pose network in a self-supervised manner.

We use the following transformation to project a pixel
from the target view p; to the source view p;:

Ds = KTt—)sﬁt(pt)K_lpt (1

where K is the camera intrinsics, T,HS is the pose estima-
tion from target view to source views, Dy (p;) is the estimated
depth of pixel p; from depth network. Bilinear interpolation
is then used to populate discrete value for coordinates of the
projected pixels. The reconstructed target view can be pro-
duced with the inverse transformation, then the photometric
consistency loss can be defined as:

Los =" L(p) - L(p)l )

where p is the index of the pixel coordinates, I; is the target
view and I, are the source view. I is the reconstructed target
view inverse-transformed from the source views. We improve
the SFM model in two aspects.

First, to the best of our knowledge, previous SFM works
use disparity network. However, if the disparity network is
trained to estimate depth, its intrinsic error will be exacer-
bated for far-away objects [19]. Under such concern, our
SM3D initializes with a depth network, which leads to bet-
ter performance.

Second, to improve the long-term robustness of pose es-
timation, many previous works increase the length of the in-
put sequence which significantly increases the computation
costs in both the training and testing process. Other works
randomly sample the neighbor frames in a longer time dis-
tance while keeping the length of sequence. However these
approaches ignore the inner connection of a snippet in a given
length. To take advantage of photometric consistency while
still saving the computation cost, we derive a new constraint
on the total loss. In the simplest case, when the snippet length
is 3, where frame 7' is the target view, and frames T'— 1, T — 2
as the source views, the proposed skip-time pose consistency
constraint can be described as:

Tt—l—nSTt—Q—nf—l = Tt—2—>t (3)

Here Tm_m is the estimated pose from frame m to n. When
using longer snippet, it will be extended between all frames,
which maximally utilize the pose consistency while saving
the computation cost in testing by only imposing in training
process.

2.2. 3D Detection Module

3D Detection Module is designed in a Pseudo-Lidar approach
that jointly trains depthnet and 3D detector, in an end-to-end
approach. We generate Pseudo-Lidar from depth estimation
by projecting each 2D pixel to 3D space. Given 2D coordinate
of each pixel (u,v) in the depth map, the projection process
can be derived as:

o= D(u,0), 7 = (u—cp) ><27 Y= (v—cy) Xz @

fu fv

where z, x,y are the depth, width and height of the corre-
sponding projected point in 3D coordinate. (cy,cy) is the
pixel location w.r.t the camera center and fy is the vertical
focal length of the camera.

Since the Pseudo-Lidar generation process is clearly dif-
ferentiable w.r.t z in Eq. (4), the end-to-end training is ap-
plicable by back-propagating the loss from 3D detector all
the way back to the monocular depthnet. Similar to [20], the
jointly learning loss is defined as:



Table 1: Absolute Trajectory Error (ATE) on the KITTI
odometry test split averaged over all 3-frame snippets, all
models are trained with snippet length 3 on our subset of
KITTI odometry training split.
Method Seq. 09 Seq. 10
SFM Learner  0.0100 4 0.0063  0.0085 £ 0.0073
SM3D (ours) 0.0090 & 0.0052 0.0084 £ 0.0067

trajectory; Red: ground truth tre

(a) SuperPoint

sty

tory

Sty

S

(c) SFM Learner (d) SM3D (Ours)
Fig. 2: Mapping results on the first 700 frames of sequence
09, KITTI test split. The ground truth trajectory is in red,
the estimated trajectory is in blue. The estimated trajectory is
recovered from the estimated pose.

L= Adet‘Cdet + /\depthlcdepth (5)

where L e and L gy, are the loss of 3D detection and depth
estimation, Ager and Agepep, are corresponding weights. Lgeq
is a combination of the classification loss for candidate cat-
egory and the regression loss for the bounding box location.
Laeptn, is the L1 loss of the estimated depth and the ground
truth.

2.3. SM3D Model

Finally, we combine the trained Mapping Module and 3D De-
tection Module together to build our SM3D network. For the
utility purpose, since the posenet from Mapping Module can
be used independently of the jointly trained depthnet, we use
the depthnet jointly trained with 3D detector for SM3D.

3. EXPERIMENTAL RESULTS

3.1. Setup

We use KITTI dataset to evaluate the algorithm performance.
On the Mapping Module, for simplicity, we use a snippet
length of 3, and train all models on a subset of KITTI odom-
etry training split. Similar to previous works, we evaluate on
sequence 09 and 10 of KITTI odometry test split. For the

3D Detection Module, we train and evaluate with KITTI 3D
detection benchmark, with 3712, 3769, 7518 images for train-
ing, validation and testing, respectively. We use two Nvidia
GTX 1080Ti GPU for training. For end-to-end training of the
Mapping Module, we initialize the depthnet from a pretrained
BTS network [21]], while the posenet is jointly trained from
scratch using same network as SFM Learner. The image size
is 128 x 416, the learning rate is set to 2 x 10~% with batch-
size 4, the parameters o and S of Adam optimizer are set to
0.9 and 0.999. For end-to-end training of the 3D Detection
Module, we first initialize from pretrained BTS and choose
PointRCNN as our 3D detector. Similar to [20]], we first fix
depthnet to train the 3D detector from the scratch. Finally,
we jointly train the detector and fine-tune the pretrained BTS
depth network. The depth ground truth is projected from Li-
dar data in KITTI. The image size is 352 x 1216, For testing,
we use a single Nvidia GTX 1080 Ti GPU.

3.2. Qualitative Results

Mapping Module. Based on the Absolute Trajectory Error
(ATE) reported in Table 1, the proposed SM3D network is
10.0% and 1.2% better than the baseline SFM learner on se-
quence 09 and 10 respectively. Recovered from the estimated
pose, we visualize the mapping trajectory as shown in Fig
2. SuperPoint[22]], Libviso2[23], and SFM Learner[3] are
chosen for comparison, where all models are trained on our
data split. As observed, the proposed SM3D network has the
closest trajectory to the ground truth, which outperforms all
methods above. Such results further validate our design of the
skip-time photometric consistency constraint and the utility of
depth rather than disparity.

3D Detection Module. We report the 3D detection results
of car category. As shown in Table 2, we compare our re-
sults to state-of-the-art models with monocular frames and
stereo pairs input from KITTI, for the average precision (AP)
of both bird’s eye view (BEV) and 3D with the threshold
IoU at 0.5 and 0.7, respectively. First, it is obvious that the
later Pseudo-Lidar methods outperform all other ”2D-3D”
approaches. Inheriting such prototype, the proposed SM3D
network outperforms all Pseudo-Lidar strong baselines on
the average precision (AP) of both BEV and 3D for IoU
threshold of 0.7, implies that SM3D performs well for chal-
lenging cases. Compared to state-of-the-art strong baseline
Mono3DPLIDAR [27]], our SM3D is 13.2% and 11.8% bet-
ter on APpgy and APsp, respectively. More importantly,
our one-stream 3D detection module is more efficient com-
pared to the two-stream structure of Mono3DPLIDAR[27],
which has an additional 2D instance segmentation subbranch
and network. We claim that there is no need to sacrifice the
model efficiency by using ”2D-3D” joint supervision train-
ing approach. Computationally expensive strategies such as
instance or semantic segmentation is not needed as the one-
stream end-to-end training strategy achieves equal and better



Table 2: Qualitative detection results comparison on KITTI val set. We report the average precision (in %) of car category on
bird’s eye view and 3D object detection as APgpgy and AP3p. Top two rows are state-of-the-art ”2D-3D” methods, middle
three rows are concurrent 3D methods, bottom two rows in blue are state-of-the-art concurrent Pseudo-Lidar based 3D methods.
The proposed SM3D (in red) outperforms all monocular methods at IoU=0.7. AP at lower IoU threshold 0.5 only reflects the
3D box proposal/candidates, while the higher IoU threshold at 0.7 reflects the precision of the box coordinates, thus the higher
AP at IoU=0.7 validates that our SM3D is better for 3D localization, not just for 3D proposal.

PL-STEREO-FP[18]

Table 3: Inference time of each module and model.
Module Mapping Detection SM3D PL-STEREO[18]
time (ms) 82 267 295 602

accuracy while keeping an efficient structure design.

In our ablation study, we compare AP of end-to-end
trained model (SM3D in Table 2), to non-end-to-end trained
model (Naive SM3D in Table 2). For end-to-end training,
SM3D is 12.7% better on APggy. For AP3p, once be-
ing trained end-to-end, we achieve a large improvement of
27.7%, which further validates the significance of our end-to-
end training strategy. From Table 2, it is clear that large AP
performance gap exists between monocular and stereo pairs
input. However, compared to other state-of-the-art monocular
models, the proposed SM3D further narrows the performance
gap to the state-of-the-art stereo model PL-STEREO-FP[18]].
More importantly, from Table 3, our Detection Module is
2.3 times faster than PL-STEREO-FP (295 ms/frame vs 602
ms/frame).

SM3D. We efficiently integrate the two modules to build the
proposed SM3D network. Although SM3D is a multi-task
model, rather than a pure 3D detector as PL-STEREO-FP, it
is still more efficient (more than 2 times faster). Considering
the accuracy-efficiency trade-off, the proposed SM3D is more
suitable for real-time application than stereo models. Table 3

APprv/AP;3p (in %), IoU = 0.5 APprv/APsp (in %), IoU = 0.7
Method Tnput Easy Moderate Hard Easy Moderate Hard
Mono3D[11] Monocular | 30.5/25.2 | 22.4/18.2 | 19.2/15.5 | 5.2/2.5 5.2/2.3 4.1/2.3
Deep3DBox|[12] Monocular | 30.0/27.0 | 23.8/20.6 | 18.8/15.9 | 10.0/5.6 7.7/4.1 5.3/3.8
MLF-MONO[24]] Monocular | 55.0/47.9 | 36.7/29.5 | 31.3/26.4 | 22.0/10.5 | 13.6/5.7 11.6/5.4
ROI-10D[225]] Monocular | 46.9/37.6 | 34.1/25.1 | 30.5/21.8 | 14.5/9.6 9.9/6.6 8.7/6.3
MonoGRNet[26] Monocular -/50.5 -/37.0 -/30.8 -/13.9 -/10.2 -17.6
PL-MONO-FP[18] | Monocular | 70.8/66.3 | 49.4/42.3 | 42.7/38.5 | 40.6/28.2 | 26.3/18.5 | 22.9/16.4
Mono3DPLiDAR|[27] | Monocular | 72.1/68.4 | 53.1/48.3 | 44.6/43.0 | 41.9/31.5 | 28.3/21.0 | 24.5/17.5
Naive SM3D (Ours) | Monocular | 70.7/45.1 | 52.5/31.2 | 47.3/22.6 | 38.0/5.4 | 29.6/4.6 | 26.2/4.5
SM3D (Ours) Monocular | 68.1/65.9 | 49.1/47.2 | 41.3/40.0 | 45.8/33.1 | 32.8/23.9 | 28.0/20.4
Stereo 89.8/89.5 | 77.6/75.5 | 68.2/66.3 | 72.8/59.4 | 51.8/39.8 | 44.0/33.5

E
Fig. 3: Qualitative results of the proposed SM3D network on KITTI val set. We visualize our 3D bounding box estimate (in
blue) and ground truth (in red) on the frontal images (1st row) and Pseudo-LiDAR point cloud (2nd row).

shows the inference time of each module and the final model
of SM3D. SM3D is 18.3% faster than a linear summation of
implementing Mapping and Detection module independently,
which validates our efficient model design and potential im-
pact in real-time application.

4. CONCLUSION

In this work, we present an efficient multi-task framework
SM3D, taking monocular snippets as input to simultaneously
estimate map of ego-motion and 3D detection/location of sur-
rounding objects. Using extensive improvements on frame-
work design and novel loss function, we end-to-end train both
the Mapping Module and the 3D Detection Module. Exten-
sive results of both mapping and detection show that each
module of SM3D network outperforms their state-of-the-
arts baselines in accuracy. More importantly, our monocular
multi-task SM3D is more efficient than single-task stereo 3D
detector. The inference time is significantly faster comparing
to method with separate module computation. In the future,
we will further explore the inner connection between map-
ping and 3D connection to make the two modules help and
collaborate to each other in both training and testing, so that
further improve the performance in each task.
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