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ABSTRACT

Bin picking is a core problem in industrial environments and
robotics, with its main module as 6D pose estimation. How-
ever, industrial depth sensors have a lack of accuracy when
it comes to small objects. Therefore, we propose a frame-
work for pose estimation in highly cluttered scenes with small
objects, which mainly relies on RGB data and makes use of
depth information only for pose refinement. In this work, we
compare synthetic data generation approaches for object de-
tection and pose estimation and introduce a pose filtering al-
gorithm that determines the most accurate estimated poses.
We will make our real dataset for object detection available
with the paper.

Index Terms— 6D pose estimation, object detection,
synthetic dataset, bin picking.

1. INTRODUCTION

Bin picking is a major automation task with various applica-
tions in industrial sectors. The core starting problem of this
work is the 6D pose estimation of instances. To tackle this
problem, an RGB-D or depth camera is usually installed on
top of the bin. There are existing solutions to bin picking
of large objects, mostly using local invariant features
or template-matching algorithms [3]], which rely on the com-
putationally expensive evaluation of many pose hypotheses.
Moreover, local features do not perform well for texture-less
objects, and thus, template-matching often fails in heavily
cluttered scenes with severely occluded objects. Additionally,
depth sensors are often more sensitive to lighting variations
than RGB cameras [4]. Most importantly, for small objects,
the depth information is often insufficient to get accurate pose
estimates. Therefore, in this work, we focus on RGB-based
convolutional neural networks, which make use of depth in-
formation only for pose refinement.

Accordingly, one of the important issues for training a
deep network is labeling the training dataset, which requires
high effort for tasks like 6D pose estimation [5]. Given a
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Fig. 1: (a) A sample image of a cluttered bin captured by a
Microsoft Azure Kinect RGB-D camera. (b) Detection re-
sults, limited to 30 objects, to be visually recognizable. (c)
Pose estimation results for all the detected objects. (d) The
best five selected poses based on the filtering algorithm.

CAD model of the object, which is usually available in the
industry, generating a synthetic dataset is possible. However,
training on only synthetic 2D images of the CAD models does
not generalize well to real data. Hence, more insightful tech-
niques are required to bridge the gap between simulation and
reality [4].

Generally, a state-of-the-art object detector is first used
to recognize individual objects, and the resultant cropped im-
ages are passed to the pose estimator. Following [6] [7], we
use Mask R-CNN [[8] for object detection. As for the task of
pose estimation, we consider an augmented autoencoder [4]],
since it has demonstrated good performance in bin picking
of deformable products [7]. Sample results of our proposed
method are displayed in Fig. [l The main contributions of
this work are as follows:

1. We present a comprehensive framework from creating
a synthetic dataset to the prediction of the 6D pose es-



timates in bin picking scenarios, where no real labeling
is needed.

2. We show that a more realistic renderer for data genera-
tion significantly improves the performance on heavily
cluttered piles.

3. We present a pose filtering scheme to select the best
pose predictions.

4. We give an analysis of how the performance of the au-
toencoder can be improved in bin picking scenarios.

The remainder of the paper is as follows: after presenting the
related work in section 2, we explain our methodology in sec-
tion 3. Experimental results are discussed in section 4 and we
conclude the paper in section 5.

2. RELATED WORK

The object pose estimation problem in bin picking scenar-
ios has been investigated using local invariant features (e.g.,
point pair features [1}, 2]) and template-matching [3]. How-
ever, these approaches do not show acceptable performance in
bin picking from a cluttered pile of textureless small objects.
Recently, convolutional neural networks [4} [6] [0 [10] have
proven to be promising in the BOP2020 challenge on 6D
pose estimation, even surpassing the depth-based methods.
They also tend to be faster, mostly with a runtime of less
than one second. These methods mainly depend on an object
detection phase, which is achieved using a state-of-the-art
object detector (Mask R-CNN [8]], RetinaNet [12], Faster
R-CNN [13])).

The most important requirements for these deep networks
are labeled datasets. As the effort of labeling 6D poses in clut-
tered scenes is high and demands a complex setup [3]], some
works have proposed training on synthetic images ren-
dered from a 3D model. To bridge the gap to reality, random
augmentations and domain randomization techniques have
been applied [15,[16]. As a different solution to this problem,
a more realistic data generation using a physics engine has
been proposed in [17]. In our work, we benefit from this ap-
proach to generate photorealistic cluttered piles and propose
the full framework for object detection and pose estimation.

Moreover, once the general pipeline is given, the pre-
dicted poses can be further refined using a pose refinement
method. Previously, this step has been achieved [6], 4] by the
ICP algorithm [18]. As the ICP-based methods show slow
performance, we show that incorporating the depth informa-
tion into the pose estimation procedure, achieves comparable
results. Besides, a filtering algorithm is applied to choose the
best poses among the estimated ones.

3. METHODOLOGY

In this work, we consider heavily cluttered and occluded
scenes of small industrial objects. Here, we explain the meth-

(a) Object 1 (b) Object 2

Fig. 2: The objects of interest are grey plastic pieces with
sizes of 2.3 x 3.6 x 0.8cm? and 1.5 x 2.7 x 0.9cm?, respec-
tively.

(b) Realistic dataset

(a) Naive dataset

Fig. 3: The synthetic datasets generated with two different
pipelines for object 1.

ods for dataset generation, followed by the full framework for
object detection and pose estimation.

3.1. Dataset generation

Creating a synthetic dataset can be achieved by using the
CAD models of the objects. Since our pipeline has two main
tasks, we need to create a dataset for both, object detection
and pose estimation.

3.1.1. Dataset for object detection

As the first approach, we make use of the pipeline in [4] to
generate synthetic images to train the object detector. In par-
ticular, a CAD model is used to render the object on a black
background. Then, random images from the Pascal VOC
dataset [[19] are added as a background, followed by random
augmentations strategies. We create 60K images per object
with 5-20 instances per scene. Due to their simplicity, we call
these images “naive dataset”.

For the second approach, we employ BlenderProc to
generate more realistic synthetic images. BlenderProc uti-
lizes a physics engine to make the synthetic data look more
realistic. Furthermore, it uses different lighting effects, object
materials and applies physics and collision checking as well.
With BlenderProc, we generate for each object type 20K im-
ages with 30 instances and 5K images with 300 objects. The
camera configuration is sampled in a range of 20° around the
top of the scene with a height between 27-33cm. We call this
the “realistic dataset”.

In this work, we consider two industrial objects (see Fig.
[2). Sample images of the naive and realistic images for object
1 are depicted in Fig. 3]



(a) Real test dataset

(b) Real test dataset 2

Fig. 4: Examples of our labeled test dataset in real scenarios.

3.1.2. Dataset for pose estimation

Similar to the naive dataset in the previous section, we gener-
ate images with corresponding 6D pose annotations, with an
additional step of image cropping around the objects. We also
compare the original pipeline results against a new dataset,
where we render multiple objects in the image crops. In Fig.
[l samples of different training data are displayed on the left
side. While the top image shows one single object in each
image crop, the bottom one includes multiple objects.

3.1.3. Test dataset for object detection

To evaluate the object detector, we captured 50 real images
per object model with more than 100 instances in the bin. The
images were taken using a Microsoft Azure Kinect camera
mounted at a height of 30cm over the bin (see Fig. [).

3.1.4. Test dataset for pose estimation

While we show qualitative results in real-world scenarios, the
quantitative results are reported on a synthetic dataset, be-
cause only for this we have full ground truth data. The au-
toencoder is trained on synthetic data following the pipeline
in [4]], and we create the test dataset with BlenderProc [[17].To
be more precise, BlenderProc generates 3D scenes, whereas
the pipeline in [4] creates augmented 2D images. Since the
data distributions of these synthetic datasets are different, we
will show that training the pose estimator on the naive dataset
and testing on the photorealistic images leads to suitable per-
formance.

As such, for each object, we created one dataset consist-
ing of 1K images with 300 objects. The camera is located at
30cm on top of the bin ground. We choose a blue background
to make it visually comparable to our real settings.

3.2. Object detection

In general, any state-of-the-art object detector can be used
(Faster R-CNN [13]], RetinaNet [12]], SSD [20]) for object
detection. However, these methods only predict the bounding
boxes. Therefore, we choose Mask R-CNN, which has the
advantage of predicting the segmentation masks of the ob-
ject as well. This can be used for pose refinement [21] by
segmenting the point clouds of the objects. In addition, we
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Fig. 5: The architecture of the autoencoder. The autoencoder
is trained to map the augmented images to the original image.
On the left, there are the two different types of training data.

can compare the pose estimation results when, instead of the
whole bounding box, only the pixels visible in the segmenta-
tion mask are given to the pose estimation module. Given an
image, we predict a set D of object detections.

3.3. Pose estimation

To receive pose estimates from the set D of the detections,
we resort to the autoencoder network presented in [4]. As the
autoencoder’s training procedure is based on only synthetic
data, it is more applicable to new industrial settings, where no
labeled data exists. In addition, the autoencoder has demon-
strated good performance in pick-and-place tasks [22| [7]]. Its
method of operation is as follows: the autoencoder is a di-
mensionality reduction technique trained to extract a 3D ob-
ject from image crops (see Fig. [5). After training, we create
a codebook to determine the rotation of the object. The code-
book is the set of all latent representations of the discretized
3D rotations that cover the whole SO(3).

At test time, the image crops from the set D are fed into
the encoder. The resulting latent representation z;.s: is then
compared with all the latent representations (z;) from the
codebook via a k-NN search, with the similarity function as:
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We then choose the rotations with the highest cosine similar-
ities.

3.4. Selecting the best pose estimates

In cluttered scenes, we have pose estimations of several hun-
dred objects. These will be used for the picking task, and as
the robot will only pick one object at a time, we are only in-
terested in the k-top pose estimates, and the question arises,
how to select the best k-pose estimates. While one can sort the
pose estimates regarding the scores given by Mask R-CNN, or
by the highest cosine similarities (T, we define a new select-
ing method that compares the depth of the original image with



Object dataset | APso.o5(%) | APso() | AR™=100(%) Object sorted by Mask | sorted by max | sorted by depth
Object 1 naive 9.3 12.5 9.6 R-CNN scores cosine sim. | differences (e;)
realistic 66.8 82.8 80.3 Object 1 0.509 0.394 0.812
i E)t;jeictizi | naive | 09 | o | 0.1 ~ Object2 H © 0533 % C 0449 % © 0633
realistic 50.4 68.7 59.2

Table 1: Object detection results after training Mask R-CNN
on different synthetic datasets

the depth of the rendered image. Let A¢ be the predicted seg-
mentation mask of object 4. Given a predicted 6D pose (Z, R),
we render the depth image ) and we define the set of pixel
Ay = {(p.q) + [Up,q) — Qp,q)| < m}, for some margin
m and where () represents the real depth image. Aj is the
segmentation mask of the rendered image. With these defini-
tions, we can build the intersection: A* := A% N A4 N A%. For
each pose estimate we calculate the depth error as follows:

=Y [Qp.a)—pq) ©))

(p,9)€A;

In the next section, we compare the different approaches.

4. EXPERIMENTAL RESULTS

4.1. Experiments on object detection

We fine-tuned a pretrained Mask R-CNN with a ResNet-50
backbone for 15 epochs with an initial learning rate of 0.001
and a mini-batch size of 4 images. The learning rate was re-
duced by a factor of 10 at epochs 3, 6, 9 and 12. Stochastic
gradient descent (SGD) with momentum (0.9) and weight de-
cay (0.0005) was used for optimization. Our work is based
on the torchvision implementation of Mask R-CNN [23]]. In
Table. [I] the accuracies of object detection in terms of AP
(the average precision with IoU thresholded at 0.50), A P5q.95
and AR™**=100 (the average recall with 100 detections per
image) are tabulated. While training on the naive dataset
does not generalize well to our heavily cluttered real scenar-
ios, Mask R-CNN trained on the realistic dataset considerably
boosts the performance.

4.2. Experiments on pose estimation

To this goal, we trained the autoencoder with a latent space
size of 128. We chose the L2 loss function, a learning rate of
0.0001 and used the Adam optimizer with a batch size of 32
and trained it for 40K iterations. The pose error metrics used
for evaluation are the Visible Surface Discrepancy (VSD), the
Maximum Symmetry-aware Surface Distance (MSSD) and
the Maximum Symmetry-aware Projection Distance (MSPD),
that are being used in the BOP2020 challenge [[L1]]. An esti-
mated pose is considered as correct w.r.t. the pose-error func-
tion e if e < 6., where e € {eysp, emssp, emspp } and 0, is the
threshold of correctness. We used the same values for 6. as

Table 2: Average recall of top 5 pose estimates sorted by three
different approaches for selecting the best estimates

Object RGB RGB + depth .
+ ICP | normal mult.-obj. mask
Object 1 || 0.691 | 0.829 | 0.812 0.790 0.798
“Object2 || 0.348 | 0.703 | 0.633 ~ 0.627  0.614
time (s) || 0.699 | 18.39 0.697

Table 3: Average recall of top 5 pose estimates using ICP and
depth measurements and combinations.

in [[L1] to calculate the average recall rates ARvsp , ARmssp
and A Ryspp. The performance of the method on a dataset is
measured by the Average Recall AR = (ARVSD + ARymssp+
ARyspp) /3.

In Table[2] we compare the results of the different meth-
ods on selecting the best five pose estimates. In these exper-
iments, we did not make use of ICP, but we took the depth
measurement at the center of the object. It shows that sorting
according to the vector (e;) in (2), results in superior perfor-
mance compared to other approaches.

The experiments in Table [3] are conducted using the se-
lection method defined by the vector (e;). We compare the
results, when testing with only RGB information, using the
depth measurement at the object center and the improvement
through ICP refinement. While ICP refinement increases the
performance slightly, the refinement of several hundred poses
per image takes time, making it impractical for the usage in
real-time settings. The experiments to reduce the noise in
cluttered scenes, like feeding only the pixels visible in the
mask to the autoencoder, or training the autoencoder with
multiple objects, have shown, against our intuition, a worse
performance than the normal pipeline. Note how incorporat-
ing the depth has improved the accuracy. We have shown
qualitative results in the supplementary materials.

5. CONCLUSION

In this paper, we investigated the task of bin picking from
piles of crowded, small-sized and identical objects. In par-
ticular, we explored the main required vision modules for
this challenging problem, i.e. object detection and pose es-
timation. For each task, we employed convolutional neural
networks, which are trained on two types of generated syn-
thetic datasets. Experimental results on synthetic and real im-
ages show that the proposed comprehensive framework, from
dataset generation to pose estimation, is promising for indus-
trial bin picking.
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