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Abstract

During the training of networks for distance metric learn-
ing, minimizers of the typical loss functions can be con-
sidered as "feasible points" satisfying a set of constraints
imposed by the training data. To this end, we reformulate
distance metric learning problem as finding a feasible point
of a constraint set where the embedding vectors of the train-
ing data satisfy desired intra-class and inter-class proximity.
The feasible set induced by the constraint set is expressed as
the intersection of the relaxed feasible sets which enforce the
proximity constraints only for particular samples (a sample
from each class) of the training data. Then, the feasible
point problem is to be approximately solved by performing
alternating projections onto those feasible sets. Such an
approach introduces a regularization term and results in
minimizing a typical loss function with a systematic batch
set construction where these batches are constrained to con-
tain the same sample from each class for a certain number
of iterations. Moreover, these particular samples can be
considered as the class representatives, allowing efficient
utilization of hard class mining during batch construction.
The proposed technique is applied with the well-accepted
losses and evaluated on Stanford Online Products, CAR196
and CUB200-2011 datasets for image retrieval and cluster-
ing. Outperforming state-of-the-art, the proposed approach
consistently improves the performance of the integrated loss
functions with no additional computational cost and boosts
the performance further by hard negative class mining.

1. Inroduction
Distance metric learning (DML) is the problem of finding

a proper function that satisfies metric axioms and assesses
the semantic dissimilarity of the data samples from its do-
main. This task is generally realized by learning proper
representations for the data samples so that the semanti-
cally similar ones are embedded to the small vicinity in the
representation space as the dissimilar samples are placed
relatively apart in the Euclidean sense. The representations
are learned through an optimization framework in which

Figure 1: Proposed approach to DML problem. Instead of
directly minimizing a loss function composed of the penalty
terms enforcing the all proximity constraints (left), we al-
ternatively minimize loss functions of proximity constraints
only for particular samples (outlined samples). Each of the
three lines (orange, yellow, brown) depicts a subset where
the proximity constraints are satisfied for outlined samples as
in Eq. (4.2). The solutions are related by projection to obtain
a solution at the intersection. (Best viewed once magnified).

the objective function utilizes the loss terms to impose the
desired intra-class and inter-class proximity constraints in
the representation space [11,14,25,30,35,36,38,45,48]. The
optimization is performed with mini-batch gradient updates
and the procedure is generally guided by providing deliber-
ately selected exemplars [10, 12, 35, 36, 39, 45, 46, 48, 53].

Existing approaches focus on inventing loss functions
to enforce all the proximity constraints at once. However,
mini-batch gradient update nature of the optimization proce-
dure implies alternatively considering only the subsets of the
proximity constraints and eventually, the obtained represen-
tations are fail to satisfy the desired proximity constraints
holistically due to possible traps in local minima.

To alleviate this problem, we revisit the proximity con-
straints in the representation space implied by the loss terms
for proper DML. To develop a general framework for DML,
we focus on finding a feasible point satisfying the proximity
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constraints. Such an alternative track is novel in the develop-
ment of the DML frameworks and addresses the challenge
of satisfying the proximity constraints for all data pairs to
better match the distance in the representation space with
semantic dissimilarity.

In contrast to existing methods, we approach the problem
by posing it as a set intersection problem and propose to
solve it by performing alternating projections onto the re-
laxed sets defined by the subsets of the proximity constraints.
Our formulation results in relatively easier subproblems to be
solved by minimizing the regularized version of the typical
loss functions for DML with a systematic batch construction,
where the batches are constrained to contain a particular
sample from each class for a certain number of iterations.
Not only that structure allows efficient utilization of hard
negative class mining (HNCM) to guide the optimization
without offline processing during batch construction but also
the subproblems better fit the mini-batch gradient update
procedure and are less prone to be trapped in local minima.
Different from the existing methods, the subproblems are
related by a regularization term owing to projection of the
solutions to the subsets. Our approach to the DML problem
is depicted in Fig. 1.

The implications and contributions as the results of our
formulation are 1) a general framework that better exploits
the proximity constraints to improve the performances of the
current and possibly future DML loss functions, 2) idea of re-
utilization of the particular class samples in the consecutive
mini-batches during the optimization iterations, 3) a solid
background through why such a biased batch construction
should work, 4) relating the mini-batch updates in general
with a regularization term and 5) an efficient class mining
method for the batch sampling with O(L) complexity in
contrast with similar methods [10, 12, 39] of O(N2).

2. Notations and Definitions
We consider dataset, {(xi, yi)i∈X×Y | i∈N}, of two-

tuples, where xi∈X denotes a sample vector from the data
space (e.g. images), yi∈Y={1, · · ·, L} denotes the corre-
sponding label of the sample among L many classes and
N={1, · · ·, N} denotes the set of indexes to represent sam-
ples from the dataset of size N . Indicator of the two sam-
ples indexed by i and j belonging to the same class is de-
noted as yi,j∈{0, 1} where yi,j=1 if yi=yj . We call j posi-
tive/negative sample for i if yi,j=1/0.

The parametric distance between xi and xj is defined as:

dfi,j(θ) , ‖f(xi; θ)− f(xj ; θ)‖2 (2.1)

which is the Euclidean distance equipped with a D-

dimensional vector valued parametric function, f : X f−→RD,
with parameters θ. The projection of θ onto a set S is:

PS(θ) , argmin
ϑ∈S

1
2 ‖θ − ϑ‖

2
2 . (2.2)

For a set defined by an inequality S = {θ | g(θ) 6 0},
we denote its indicator as ιS(θ) which is:

ιS(θ) , lim
λ→0

[ 1λ g(θ)]+ , (2.3)

where [z]+=max{0, z} and g(·) is an arbitrary function
defining S. We are to approximate ιS(θ) for small λ as:

ιS(θ) ≈ 1
λ [g(θ)]+ , ι̂S(θ). (2.4)

3. Review of the Related Works
We restrict ourselves to the distance metric learning prob-

lem which is posed as learning the parameters, θ, of an
embedding function, f(·; θ), so that the parametric distance,
dfi,j(θ), between the data samples reflects their semantic dis-
similarity. f as a linear mapping is considered in earlier
approaches [29, 47, 49] that later inspire most of state-of-the-
art frameworks [11,14,25,30,35,36,38,45,48] in which f is
a nonlinear mapping realized by deep neural networks. The
general framework for learning the parameters is to minimize
an overall loss function of the proximity constraints:

L(·)(θ; T ) = 1
|T |

∑
t∈T

`
(·)
t (θ), (3.1)

where T is the set of index tuples (e.g. pair (i, j), triplet
(i, j+, j−), etc.) and `(·)t (θ) is a loss term penalizing the
ranking violations among the samples indexed by t. We omit
dataset, D, dependency of, L, for clarity.

Learning a proper linear mapping for the parametric dis-
tance is initially formulated as a convex optimization prob-
lem in [49]. To prevent null mappings, a constraint that
enforces mapping of the samples from different classes to be
at least separated by some margin is added to the formulation.
Moving that constraint to the objective via hinge loss [11]
results in the well-known contrastive loss:

`cntrvi,j (θ) = yi,j d
f
i,j(θ)

2+(1− yi,j) [ε−dfi,j(θ)]
2
+ , (3.2)

for sample pairs, (i, j). Contrastive loss ignores intra-class
variations of the classes. Triplet loss introduced in [47] and
popularized in deep metric learning frameworks [12, 35]
alleviates this problem by constraining the distance to any
positive sample to be at least some margin smaller than the
distance to any negative sample for each sample:

`tripleti,j+,j−(θ) = [dfi,j+(θ)
2 − dfi,j−(θ)

2 + ε]+, (3.3)

where j+ and j− are a positive and a negative sample for
the sample i, respectively. Minimizing triplet loss entails
deliberately selection of the triplets to have nonzero loss
terms. Thus, either large batch size or mining for exemplars
violating the triplet constraint is required [35]. Such an effort
makes the computation of the triplet loss is less attractive
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than of the contrastive loss. Margin-based loss is introduced
in [48] to provide the flexibility in the distribution of the
classes in the embedding space without using triplets as the
exemplars. It expresses the margin constraint of the triplet
loss as separate loss terms of the distances between positive
and negative sample pairs by relaxing the constraint of the
contrastive loss on the positive pairs:

`margini,j (θ) = yi,j [d
f
i,j(θ)− ε+ δ]+

+ (1− yi,j) [ε+ δ − dfi,j(θ)]+,
(3.4)

where δ controls the separation margin and ε is a trainable pa-
rameter for the boundary between positive and negative pairs.
The contrastive, triplet and margin-based loss terms are the
simplest forms of the pairwise distance ranking based loses.
Proceeding approaches utilize smoothed versions of these
losses by replacing hinge loss with log-sum-exp [46, 51] or
soft-max [36, 52] expression. In a different aspect, angular
loss [44] that constraints the local geometry of the samples
in the embedding space is proposed to better exploit the rela-
tion among triplets. In those losses, only 2 or 3 data samples
contribute to the loss terms. Ranking among more samples
are considered in quadruplet [6,15,20], histogram [4,42] and
soft-batch-mining [25, 36, 46, 52] based losses. Soft-batch-
mining exploits log-sum-exp expression as the approxima-
tion of max operator to select samples from the batch. Thus,
ranking among multiple samples are considered.

The aforementioned approaches consider minimization
of an overall loss function to enforce proximity constraints.
However, the optimization is performed upon mini-batches
due to the vast amount of constraints. Therefore, intra-class
variations are prone to be missed, leading to poor general-
ization [16, 22, 32]. Utilizing informative tuples with non-
trivial settings in the gradient updates is considered to ad-
dress the side effects of the mini-batch gradient updates
to improve the representations [10, 12, 35, 36, 39, 48, 53].
Yet, global mining [10, 12, 39] for such informative tuples
brings additional computational burden and limits scalability
to the large datasets, on the other hand, approximate min-
ing [35, 36, 45, 46, 48, 53] is limited to cover enough settings
to capture variations in the data. Generation of synthetic
hard negative samples through adversarial [9, 55] and varia-
tional [22, 56] models are addressed in recent approaches.

To enhance the diversity of the semantic information em-
bedded to the vector representations, ensemble techniques
are also combined with deep metric learning framework
[17, 26, 34, 50]. The general idea is simply concatenating the
vectors from multiple embedding functions whose parame-
ters are learned by considering different local features of the
samples. Hence, better embedding space can be obtained
by integrating the vectors that are specialized to different
aspects of the samples. Modeling of the class variations
through clustering track are also addressed in [8, 30, 31].
Rather than modeling, eliminating intra-class variances is

considered in [7, 16, 22, 32]. Though the general framework
is to disentangle the intra-class variance upon global repre-
sentation, differently in [16], variations in the local features
are addressed and higher-order moments are considered to
regularize the local features so that their aggregation is of
less variance.

Dealing with the relaxed proximity constraints for better
representation learning is not only the motivation of us but
also the motivation of the recent approaches [5, 7, 23, 30].
The underlying idea is to better solve the relatively simpler
problems. Existing approaches either are limited to the solu-
tion of the relaxed problem [7, 23, 30] or fail to effectively
exploit the relations among the relaxed problems to improve
the solutions of the global problem [5, 34]. Contrarily to
existing approaches, our motivation is to improve generaliza-
tion of the learned representations by satisfying proximity
constraints more holistically through effectively combining
the solutions of the simpler relaxed problems. To this end,
we propose a feasible point formulation to inherently relate
the relaxed problems and introduce a regularizer to be ex-
ploited not only in the proposed but also in a typical DML
framework.

4. Proposed Approach
We revisit the early DML formulations [47, 49] which

involve pairwise proximity constraints in the embedding
space for the negative pairs. Yet, differently, we omit the
positive pair distances to be minimized from the objective
function and introduce it as a constraint for the constraint
set of θ. Given a dataset of N samples, {(xi, yi)i}i∈N , we
consider the constraint set C = C+ ∩ C− for θ:

C+ = {θ | dfi,j(θ) 6 ε+, ∀(i, j)∈N 2, yi,j=1} , (4.1a)

C− = {θ | dfi,j(θ) > ε−, ∀(i, j)∈N 2, yi,j=0} . (4.1b)

Once ε+<ε−, the constraints C+ and C− together enforce
f(·; θ) to map the samples from the same class to some
neighborhood such that no sample from any other class can
be mapped to that neighborhood.

Proposition 4.1. Any θ ∈ C for some ε+ and ε− is a global
minimizer of the loss function, L(·)(θ; T ), defined in Eqn.
(3.1) for the loss terms `cntrvi,j (θ), `tripleti,j+,j−(θ) and `margini,j (θ)
defined in Eqns. (3.2)-(3.4), respectively.

Proof. The loss terms defined in Eqns. (3.2)-(3.4)
satisfy `

(·)
t (θ)>0, ∀θ which implies minL(·)(θ; T )=0.

Thus, it is enough to show that the proper selec-
tion of ε+ and ε− yields `

(·)
t (θ)=0, ∀t∈T , ∀θ∈C.

If ε−=ε, any θ∈C results in `cntrvi,j (θ)→0 as
ε+→0, ∀(i, j)∈T . Similarly, choosing ε+=ε−δ and
ε−=ε+δ makes `margini,j (θ)=0, ∀(i, j)∈T , ∀θ∈C. Fi-
nally, for any ε+, choosing ε−=((ε+)2+ε)1/2 results in
`tripleti,j+,j−(θ)=0, ∀(i, j+, j−)∈T , ∀θ∈C.
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Proposition 4.1 can be extended to the other pairwise dis-
tance based losses and suggests that finding a feasible point
of C is equivalent to solving the minimization of those loss
functions. This is actually the restatement of the motivation
of the existing approaches [11, 21, 23, 35, 36, 38, 42, 44, 48]
in which the loss functions are developed to impose those
constraints in the first place. Therefore, these methods can
be considered as implicitly finding a feasible point of the
constraint set via developing a loss function to be minimized.
We address the problem differently by directly focusing on
finding a feasible point and develop the loss function accord-
ingly. To formulate our approach, we consider the relaxed
set Ck = C+k ∩ C

−
k :

C+k ={θ | d
f
kl,j

(θ) 6 ε+, ∀(l, j), l∈Y, j∈N , ykl,j=1} ,

C−k ={θ | d
f
kl,j

(θ) > ε−, ∀(l, j), l∈Y, j∈N , ykl,j=0} ,
(4.2)

where kl∈{i∈N | yi=l} denotes the index of a sample from
class l. Note that the set {kl}Ll=1 contains a sample index
from each class. For all samples, Ck enforces proximity con-
straints only relative to the particular class samples indexed
by {kl}Ll=1. For each k, we consider distinct samples from
each class such that {kl}Ll=1∩{k′l}Ll=1=∅ for k′ 6=k. Then,
C can be expressed as C = ∩Kk=1Ck, where K is the total
number of sets, which can be considered as the maximum
number of samples for a class. Then, the feasible point
problem can be reformulated as finding a point in the in-
tersection of the sets. If the sets, {Ck}k, were closed and
convex, the problem would be solvable by alternating projec-
tion methods [2,3]. However, it is not uncommon to perform
alternating projection methods to non-convex set intersection
problems [27, 37]. Hence, we propose to solve the problem
approximately by performing alternating projections onto
the feasible sets {Ck}k. Hence, the problem becomes:

θ∗ = lim
k→∞

θ(k), where θ(k) = PCk(θ(k−1)) , (4.3)

with Ck+K,Ck and θ(0) is arbitrary. A problem instance
corresponding to a projection becomes:

θ(k) = PCk(θ(k−1)) = argmin
θ∈Ck

1
2 ‖θ

(k−1)−θ‖22 , (4.4)

which can be written as an unconstraint problem in terms of
the set indicator functions in (2.3) as:

θ(k)=argmin
θ

1
2 ‖θ

(k−1)−θ‖22

+
∑

(l,j)|ykl,j
=1

ιS+
kl,j

(θ) +
∑

(l,j)|ykl,j
=0

ιS−
kl,j

(θ) ,
(4.5)

where S+kl,j={θ|d
f
kl,j

(θ)6ε+} , S−kl,j={θ|d
f
kl,j

(θ)>ε−}
and (l, j)∈Y×N . If the set indicator functions are to be

approximated for small λ as ι̂S∓
∗
(θ)= 1

λ [∓(df∗(θ)−ε∓)]+,
as in Eqn. (2.4), the problem becomes after scaling with λ:

θ(k)=argmin
θ

∑
kl,j

(
ykl,j [d

f
kl,j

(θ)−ε+]+

+(1−ykl,j) [ε−−d
f
kl,j

(θ)]+
)
+ λ

2 ‖θ
(k−1)−θ‖22

(4.6)

where (l, j)∈Y×N . The resultant minimization problem
for a projection step is very similar to a typical DML for-
mulation in Eqn. (3.1) with a margin-based loss term [48]
defined in Eqn. (3.4). The two significant differences are the
utilization of the particular class samples, {kl}l∈Y , for the
pairwise distance losses and the regularization term relating
the alternating subproblems.

4.1. Solving for Parameters

To obtain the solution, θ∗, defined in Eqn. (4.3), one
should cycle through the sets, {Ck}k, and perform projec-
tions until the convergence. The nature of the problem is
non-convex. Therefore, exploiting diverse combinations of
sets might improve the solution. We propose to perform
projections by randomly selecting the class samples for the
sets. This approach results in different feasible sets {Ck}k
for each cycle so that the procedure does not stick to the
specific sets. Performing a projection involves a minimiza-
tion problem. In this perspective, either convergence can
be monitored to pass the next projection or the projection
operator can be approximated by M iterations of training.
The latter approach gives the flexibility to control the fitting
of the parameters to the subproblems. We therefore propose
to use M -step approximations of the projection operators as
θ(k)≈P(M)

Ck (θ(k−1)) in our framework.
Proposed learning procedure for θ necessitates utiliza-

tion of the particular class samples for the loss computation.
To provide scalability, those particular class samples can
also be sampled during batch construction. In this manner,
another implication of the proposed framework becomes
imposing constraint on the batch construction for the mini-
mization. If we disregard the resultant loss formulation in
Eq. (4.6) and consider only batch construction method of our
framework, we can formulate minimization of any pairwise
distance ranking based loss function within the proposed
batch construction method as:

θ(k) = argmin
θ
L(·)(θ; Tk) + λ

2 ‖θ
(k−1) − θ‖22 , (4.7)

where (·) can be any proper loss and Tk is the tuple set of
the sample indices defining Ck. The proposed DML frame-
work in its most general form is summarized in Algorithm 1.
Alternating projections only introduces a constrained batch
construction step to the standard optimization procedure.

4.2. Implications

Robustness. The parameters are obtained through solv-
ing then relating the subproblems rather than solving an
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Algorithm 1 PROFS DML

randomly initialize parameters θ(0), k=0
repeat

sampleR={kl | ykl=l}Ll=1∼N class representatives
// i.e. an example for each class

repeat M times // θ(k+1)≈P(M)
Ck (θ(k))

sampleR′={ir}r∼R a subset of the class reps.
// possibly via hard class mining

sample E={jn}n∼N a batch of examples
construct exemplar batch B fromR′ and E

// e.g. pairs (ir, jn)
θ←θ−α∇θ(λ2 ‖θ

(k)−θ‖22+L(·)(θ;B))
k←k+1, θ(k)←θ

until convergence

overall problem at once. The subproblems are relatively
easier problems owing to the relaxed proximity constraints
to be considered. Thus, better solutions to the subproblem
specific proximity constraints can be obtained. Nevertheless
the solutions are expected to be localized, the regularization
term entangles the solutions of the alternating subproblems
for a better holistic solution. This nature makes our approach
more robust to the mini-batch updates.

Class representatives. The subproblems can be seen
as learning representations so that the particular class sam-
ples become the class representatives, akin to learning class
representative vectors for a softmax classifier. Therefore,
choosing the relaxed feasible sets as in Eqn. (4.2) implicitly
integrates classification framework to the DML problem in
our formulation. In this point of view, our formulation is
aligned with the studies [23, 29, 30, 40, 54] supporting the
superiority of the softmax incorporation into DML.

Hard negative class mining. The nature of the proposed
DML framework allows efficient HNCM batch construction.
As θ is projected onto the feasible sets, the set-specific class
samples can be considered as the class representatives. Thus,
using those representatives, approximate global mining can
be efficiently performed. To this end, we store the embed-
ding representations of the class representatives and update
those representations as we sample the corresponding rep-
resentatives for the batch construction. In this way, we can
perform online HNCM with O(L) complexity.

Relation to linear metric learning with convex opti-
mization. Convex optimization formulation of linear metric
learning in [49] involves similar alternating projections onto
feasible sets to perform projected gradient ascent. That ap-
proach only considers the entire constraint set induced by
the positive pairs, whereas we consider both negative and
positive pair distances jointly in the relaxed feasible sets.

Relation to tuplet and proxy-based losses. Minimiza-
tion of tuplet losses [36,52] can be considered as performing

our method by using M=1 step approximation of the pro-
jection operator. Similarly, the minimization of proxy-based
losses [7, 23, 29, 30] can be considered as a single projection
operation. Therefore, tuplet and proxy-based loss formula-
tions are to be the two extreme cases of our framework.

Regularization. Our formulation suggests a regulariza-
tion term to entangle the solutions of the different subprob-
lems. The gradient update of a typical DML framework ex-
ploiting deliberately constructed mini-batches during the loss
minimization can be considered as performing projections
withM= 1 step approximation. The proposed regularization
term can be introduced to the loss to improve generalization
by entangling the updates of the different batches.

5. Experimental Work
We examine the effectiveness of the proposed DML

framework through evaluation on the three widely-used
benchmark datasets for the image retrieval and clustering
tasks. We perform ablation study on the effect of M -step
approximation of the projection operation and the regulariza-
tion term. Throughout the section, we use PROFS to refer
our framework.

5.1. Benchmark Datasets and Evaluation Metrics

We obtain results by utilizing three public benchmark
datasets. The conventional protocol of splitting training
and testing sets for a zero-shot setting [25] is followed for
all datasets. Hence, no image is in the intersection of the
training and the test sets. Stanford Online Products (SOP)
[25] dataset has 22,634 classes with 120,053 product images.
The first 11,318 classes (59,551 images) are split for training
and the other 11,316 (60,502 images) classes are used for
testing. Cars196 [19] dataset contains 196 classes of cars
with 16,185 images. The first 98 classes (8,054 images) are
used for training and remaining 98 classes (8,131 images)
are reserved for testing. CUB-200-2011 [43] dataset consists
of 200 species of birds with 11,788 images. The first 100
species (5,864 images) are split for training, the rest of 100
species (5,924 images) are used for testing.

We follow the standard metric learning experimental pro-
tocol defined in [25] to evaluate the performance of the deep
metric learning approaches for the retrieval and clustering
tasks. We utilize normalized mutual information (NMI) and
F1 score to measure the quality of the clustering task which is
performed by conventional k-means clustering algorithm. In
order to evaluate clustering performance, normalized mutual
information (NMI) and F1 score are utilized. NMI computes
the label agreement between predicted and groundtruth clus-
tering assignments neglecting the permutations while F1

measures harmonic mean of the precision and recall. Fur-
thermore, we exploit binary Recall@K metric to evaluate the
performance of the retrieval task. Recall@K for a test query
is 1 if at least one sample from the same class of the query
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is in the K nearest neighborhood of the query. The average
of the Recall@K for the test queries gives the Recall@K
performance on the dataset. We refer [25] for the detailed
information related to these evaluation metrics.

5.2. Training Setup

We use Tensorflow [1] and PyTorch [28] deep learning
libraries throughout the experiments. Tensorflow is used
for trainings on GoogLeNet V1 (Inception V1) [41] and Py-
Torch is used for trainings on GoogLeNet V2 (with batch nor-
malization) [24] and ResNet-50 [13]. After the images are
normalized and scaled to 256×256, we perform 224×224
random crop and data augmentation by horizontal mirroring
as pre-processing. For the embedding function, f(·; θ), we
utilize architectures until the output of the global average
pooling layer with the parameters pretrained on ImageNet
ILSVRC dataset [33]. After the pooling layer, we add a
linear transformation layer (fully connected layer) to obtain
the representation vectors of size 512. We fix the embedding
size of the samples at 512 throughout experiments, since it
is shown in [25] that the embedding size does not have a key
role on comparing performances of the deep metric learning
loss functions. The parameters of the linear transformation
layer are randomly initialized and are learned by using 10
times larger learning rate than the pretrained parameters for
the sake of fast convergence. For the hyper-parameters, our
framework introduces 2 additional parameters: λ for regu-
larization and M to approximate projection operation. We
set the regularization term as the result of the projection
based formulation, λ, to a small reasonable value, 10−3. The
number of projections steps, M , is determined according
to the findings of the ablation study which is presented in
subsection 5.4. For the other hyper-parameters coming from
adaptation of the baseline framework (e.g. margins, number
of positive samples etc.), we follow the settings in the corre-
sponding baseline work. For the optimization procedure, we
select the base learning rate as 10−4 for SOP dataset whereas
we utilize 10−5 learning rate to train CUB-200-2011 and
Cars196, since they tend to meet over-fitting problem due
to the limited dataset size. We exploit Adam [18] optimizer
for mini-batch gradient descent with a mini-batch size is 128
and default moment parameters, β1=.9 and β2=.99. Finally,
since the convergence rate of each method is different, we
train all the approaches for 100 epochs and post the perfor-
mance at their best epoch as in [48] instead of following the
conventional procedure [25] reporting performance of DML
approaches after a certain number of training iterations.

5.3. Baseline Methods and PROFS Framework
Adaptation

We apply proposed PROFS framework with and with-
out HNCM on the contrastive [11], triplet [35], lifted struc-
tured [25], N -pair [36], angular [44], margin-based (Mar-

gin) [48], multi-similarity (MS) [45] and SoftTriple [30] loss
functions in order to directly compare with the state-of-the
art methods. The comparison with the contrastive, triplet
and Margin losses is important to examine the effectiveness
of our original formulation, while the comparison with the
other losses is to show that the formulation can be extended
to the other loss functions by exploiting the proposed batch
construction and regularization. Furthermore, we compare
proxy-based [23,30] loss functions with PROFS owing to its
relation to our formulation.

To evaluate the approaches in the same basis, we retrain
all the aforementioned loss functions excluding SoftTriple
by exploiting the same GoogLeNet V1 architecture with the
default hyper-parameters used in the original works except
for the mini-batch and the embedding sizes as explained
in the subsection 5.2 for a fair comparison. Moreover, we
integrate our framework to Margin and SoftTriple losses
in their own architectures (ResNet-50 and GoogLeNet V2,
respectively) in order to compare our framework with state-
of-the-art.

To adapt the lifted structured and MS loss to PROFS
framework, the loss is slightly modified by ignoring the pair-
wise terms between the non-representative samples. For the
adaptation of the sampling strategies, we trained Margin
loss with the distance weighted sampling in its own archi-
tecture. However, we were unable to acquire good results
in GoogLeNet V1, since the distance weighted sampling is
very sensitive to its parameters and we could not determine
well-performing hyper-parameters. On the other hand, due
to its similarity with the contrastive loss, we exploit the same
hard mining strategy inspired from [53] as in the contrastive
loss for the mini-batch sampling method of the Margin loss.
It should be noted that we sample one negative pair for each
positive pair as in [48] for the contrastive, triplet and Margin
loss functions. Such an approach provides balance to the
number of positive and negatives pairs. In the conventional
hard mining, the number of hard negative pairs should match
the number of positive pairs for the contrastive, triplet and
Margin loss functions. Thus, in PROFS framework, each
class representative should have the same number of its cor-
responding positive pairs and hard negative pairs to obtain an
exemplar set consistent with hard mining without violating
the batch construction constraint of PROFS. No adaptation is
performed for the N -pair and angular loss, since their formu-
lation is consistent with PROFS. Finally, for SoftTriple loss,
the adaptation is not straightforward, since this framework
is inherently relaxed formulation of DML problem. On the
other hand, in that framework, the loss terms are determined
by assigning samples to the trainable cluster centers. At
different iterations, the assignment may differ. To this end,
we consider each iteration as a subproblem and integrate our
framework by exploiting the regularization term to entangle
the updates of the iterations. For HNCM, we utilize cluster
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centers as representatives in SoftTriple.

5.4. Ablation Study

Figure 2: The retrieval performance of the PROFS on the
Stanford Online Products [25] (left), the CARS196 [19]
(middle) and the CUB-200-2011 [43] (right) for different
number of iterations used to compute projection.

We present to ablation studies on the approximation of the
projection operator and the effectiveness of the regulariza-
tion term. For the computational complexity, the proposed
PROFS without HNCM framework does not bring any addi-
tional computational cost. On the other hand, HNCM only
introduces scan of class representatives during batch con-
struction and has 0.008% (CUB&CARS) and 0.9% (SOP)
increase in overall computation time. Moreover, we have not
observed any significant increase or decrease in the conver-
gence rate owing to re-utilization of the class samples.

5.4.1 Number of Projection Iterations

We perform ablation study to determine approximately how
many training iterations,M , required to assure an acceptable
approximation of the projection operation. Due to the non-
convex nature of the problem, enforcing convergence for
each projection might lead to ill-configured parameters that
the proceeding projections cannot recover.

To examine effect of M , we apply PROFS framework
without hard negative class mining to the contrastive, triplet,
N -pair and margin loss functions on SOP, Cars196 and CUB-
200-2011. We use 2 positive images, I=2, per class in mini-
batches for each loss function to have consistency among the
loss terms. The retrieval performance curves for varying M
values are plotted Fig. 2. The retrieval performance of each
loss function improves on all three datasets as M increases
up to certain values. Exceeding that certain number of iter-
ations leads to possible over-fitting to the subproblems and
the performance drops accordingly. Once the performance
curves of the different datasets are compared, a heuristic re-
lation between M and the number of classes in a dataset can
be deduced. Hence, instead of fine-tuning M parameter for
each problem, we derive M as M=dρ/p(yi)e where d·e is the
ceiling function, p(yi) denotes the probability of observing
a class i in a mini-batch of size B, and ρ is how many times
a class representation is to be used during the minimization.
We write p(yi)=B/I L for a batch containing I samples from

each class it contains among L many classes. Considering
the plots in Fig. 2, we set ρ=6 throughout the experiments.

5.4.2 Effectiveness of the Regularization Term

We analyze the effect of λ2 ‖θ
(curr.)−θ‖22 term by sweeping

the λ parameter for training settings with Margin loss in
GoogLeNet V1. Theoretically λ should be as small as pos-
sible (Eqn. (4.6)), thus large values result in performance
drop owing to over-regularization. On the other hand, λ=0
implies no regularization for the projection and leads to over-
fitting to the subproblems. According to results in Fig. 3, the
performances are similar for the values within

[
10−2, 10−4

]
.

Though we pick 10−3 throughout the experiments, one can
choose to adaptively reduce λ as the parameters converge.
In this way, the relative significance of the loss function for
the constraints can be preserved as the parameters converge.

Figure 3: Effect of the ‖θ(curr.)−θ‖22 term

5.5. Quantitative Results

The quantitative results of the proposed PROFS frame-
work trained in GoogLeNet V1 with and without HNCM
for the clustering and retrieval tasks on SOP, CARS196 and
CUB-200-2011 datasets are provided in Table 1 together
with the baseline methods indicated in 5.3 for comparison.
It can be observed that PROFS framework consistently out-
performs the associated baseline methods. Compared with
the original loss functions, the proposed PROFS framework
boosts their performance on each dataset for the clustering
and retrieval tasks by up to 3.2%, 11.7% and 9.5% points
on NMI, F1 and R@1 metrics, respectively. Additionally,
the proposed PROFS framework with the contrastive and
triplet loss functions produce competitive results in compari-
son with superior Margin loss. It supports that considering
relaxed feasible sets iteratively is beneficial over solving
the entire problem at once even with the basic loss func-
tions. This result is important to support the motivation of
our formulation. Furthermore, performance improvements
on the loss functions which does not directly fit in our for-
mulation in Eq. (4.6) show that the batch construction and
regularization implication of the proposed formulation can
be generalized to the pairwise distance based loss functions.

The performances of the proposed framework integrated
to Margin and SoftTriple architectures are provided in Ta-
ble 2. In most settings, the proposed framework improves
state-of-the-art. Especially, improving SoftTriple is of great
importance, since that performance increase comes from
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Table 1: Comparison with the existing methods for the clustering and the retrieval tasks on SOP [25], CARS196 [19] and
CUB-200-2011 [43] datasets. Red: the overall best. Blue: the overall second best. Bold: the loss term specific best.

Stanford Online Products CARS196 CUB-200-2011

Method NMI F1 R@1 R@10 R@100 R@1000 NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@2 R@4 R@8

Contrastive-Hard 89.7 34.5 67.9 83.8 93.2 97.9 66.0 36.6 75.8 84.5 90.1 94.1 63.4 31.8 56.7 68.4 78.8 86.3
C-PROFS 90.3 36.4 70.1 85.4 94.1 98.2 67.8 39.0 76.0 84.8 90.1 94.6 64.1 32.0 57.7 69.0 78.9 86.9
C-PROFS-HNCM 91.0 41.2 74.5 87.9 94.9 98.3 66.9 38.1 77.0 85.3 90.9 94.4 64.6 33.1 57.9 69.0 79.4 87.0

Triplet-Semi 87.1 23.4 57.0 75.0 88.2 96.4 62.4 30.0 71.2 80.7 87.6 92.5 60.9 27.8 55.5 67.8 78.2 86.5
Triplet-Hard 88.1 30.6 65.4 81.4 91.7 97.4 62.5 30.6 71.4 81.1 87.5 92.7 63.1 30.7 56.8 68.7 78.6 86.5
T-PROFS 90.7 37.7 72.4 86.3 94.1 98.1 64.7 33.4 74.5 82.8 89.1 93.5 63.5 31.3 57.9 68.9 78.7 86.7
T-PROFS-HNCM 91.3 42.3 74.9 87.5 94.4 98.1 64.9 33.7 74.5 83.5 89.4 93.7 64.5 32.3 58.1 69.0 78.9 86.8

Lifted 88.9 31.4 66.7 83.2 91.7 97.4 60.1 27.7 67.5 77.3 84.9 90.7 60.6 26.9 53.5 65.3 75.4 84.8
L-PROFS 89.5 33.8 68.1 84.0 92.2 97.6 61.2 27.9 68.4 78.1 85.6 91.1 61.4 28.1 54.5 66.1 76.2 85.1
L-PROFS-HNCM 89.9 35.1 69.3 85.1 93.6 98.1 61.5 30.0 70.7 79.6 86.2 91.5 62.0 29.5 54.6 66.1 76.7 85.5

N -pair 89.9 35.7 70.8 86.0 94.0 98.1 67.4 38.2 76.7 84.8 91.0 95.0 64.6 33.0 56.0 68.9 79.3 87.4
N -PROFS 90.3 37.3 71.7 86.6 94.0 98.2 68.1 38.3 77.8 85.9 91.6 95.2 64.9 33.6 56.5 69.0 79.3 87.7
N -PROFS-HNCM 90.5 37.5 71.9 86.6 94.1 98.2 68.6 39.9 77.6 86.2 91.7 95.2 65.2 33.7 56.7 68.8 79.7 87.5

Angular 90.0 36.1 72.5 86.6 93.6 97.6 66.0 35.9 77.4 85.3 91.0 94.7 61.9 29.4 54.5 66.4 76.8 84.9
A-PROFS 90.1 37.2 73.0 86.8 93.7 97.7 66.3 36.8 77.5 85.6 91.2 94.7 63.0 31.7 54.6 66.7 76.9 85.8
A-PROFS-HNCM 90.4 38.4 73.7 86.9 93.8 97.7 66.3 37.9 77.9 85.6 91.4 94.8 64.6 33.4 55.8 68.1 78.8 87.3

Margin-Hard 90.6 38.1 73.9 87.7 94.8 98.2 64.2 34.6 75.1 83.7 89.5 93.8 64.0 30.9 55.3 67.2 77.9 87.5
M-PROFS 91.3 42.7 74.5 88.0 95.0 98.2 64.6 35.1 76.0 84.3 89.5 93.8 64.3 32.7 57.7 69.5 79.5 87.5
M-PROFS-HNCM 91.4 43.2 76.3 88.8 95.0 98.3 66.8 37.3 77.0 85.1 90.8 94.6 64.8 32.4 58.5 69.6 79.7 87.6

MS 90.5 38.2 71.3 86.4 94.2 98.1 65.3 35.5 76.2 84.2 89.9 94.0 64.7 33.8 56.4 69.1 79.3 87.5
MS-PROFS 90.8 39.5 72.6 87.2 94.3 98.2 66.6 37.1 76.6 84.9 90.6 94.4 65.0 34.3 57.5 69.4 79.6 87.5
MS-PROFS-HNCM 91.0 42.9 74.6 87.7 94.6 98.2 68.4 39.2 77.8 86.0 91.8 95.3 65.2 34.4 58.1 69.3 79.6 87.7

Table 2: Comparison with state-of-the-art methods on SOP [25], CARS196 [19] and CUB-200-2011 [43] datasets. Red: the
overall best. Blue: the overall second best. Bold: the loss term specific best.

Stanford Online Products CARS196 CUB-200-2011

Method R@1 R@10 R@100 R@1000 R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Proxy-NCA [23] 73.7 - - - 73.2 82.4 86.4 88.7 49.2 61.9 67.9 72.4
Clustering [38] 67.0 83.7 93.2 - 58.1 70.6 80.3 87.8 48.2 61.4 71.8 59.2
HDC [53] 69.5 84.4 92.8 97.7 73.7 83.2 89.5 93.8 53.6 65.7 77.0 85.6
HTL [10] 74.8 88.3 94.8 98.4 81.4 88.0 92.7 95.7 57.1 68.8 78.7 86.5
MS [45] 78.2 90.5 96.0 98.7 84.1 90.4 94.0 96.5 65.7 77.0 86.3 91.2
TML [52] 78.0 91.2 96.7 99.0 86.3 92.3 95.4 97.3 62.5 73.9 83.0 89.4
Margin [48] 72.7 86.2 93.8 98.0 79.6 86.5 91.9 95.1 63.6 74.4 83.1 90.0
M-PROFS 76.5 89.0 95.2 98.5 81.1 88.1 92.7 95.8 64.9 75.8 84.2 90.4
M-PROFS-HNCM 76.9 89.5 95.3 98.5 81.3 88.0 93.0 95.8 64.1 75.0 84.2 90.3

SoftTriple [30] 78.3 90.3 95.9 - 84.5 90.7 94.5 96.9 65.4 76.4 84.5 90.4
SoftTriple-PROFS 78.6 91.4 96.0 99.1 86.1 91.9 94.7 97.4 66.0 76.8 85.0 90.7
SoftTriple-PROFS-HNCM 78.7 91.7 96.8 99.2 86.3 92.5 95.0 97.5 65.7 76.2 84.5 90.6

the regularization purely. This result supports the effec-
tiveness of the regularization term to be used to improve
generalization. Lastly, utilizing HNCM is more efficient on
SOP dataset, since it has almost 100 times larger number of
classes than CARS196 and CUB-200-2011 datasets.

6. Conclusion

We have presented a novel DML formulation based on
alternating projections onto the feasible sets which impose
relaxed proximity constraints. The resultant framework in-

troduces a simple, yet effective, batch construction scheme
and a regularizer to improve the generalization. Notably, the
proposed framework is applicable with the pairwise distance
based state-of-the-art DML loss functions without introduc-
ing any additional computational cost. Extensive evaluations
on the benchmark datasets show that the performances of
the several state-of-the-art loss functions are improved by
the proposed framework.
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