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ABSTRACT

Today, 3D objects are an increasingly popular form of media.
It has become necessary to secure them during their trans-
mission or archiving. In this paper, we propose a two tier
reversible data hiding method for 3D objects in the encrypted
domain. Based on the homomorphic properties of the Pail-
lier cryptosystem, our proposed method embeds a first tier
message in the encrypted domain which can be extracted in
either the encrypted domain or the clear domain. Indeed, our
method produces a marked 3D object which is visually very
similar to the original object. It seeks to be format compliant
and to preserve the original size of the data, without the need
for an auxiliary file. Moreover, large keys are used, rending
our method secure for real life applications.

Index Terms— Multimedia security, reversible data hid-
ing, 3D object security, homomorphic encryption, signal pro-
cessing in the encrypted domain.

1. INTRODUCTION

Over the last decade, the cloud has become a popular way
of storing and transferring multimedia such as images, videos
and 3D objects. The need for multimedia security has become
significant. Encryption methods serve to secure the multime-
dia file by converting its content to unintelligible ciphertext.
Once the media is encrypted and located in the cloud, a user,
whether it be the original owner of the media or a third party,
may wish to analyse or to embed data in the encrypted media.
The advantage of reversible data hiding in the encrypted do-
main (RDH-ED) is that it allows third party users to embed
data into the cover media, without knowledge of the origi-
nal content and therefore without the need to compromise the
confidentiality of the cover media.

RDH-ED methods can be broken down into two main
categories: Reserving Room Before Encryption (RRBE) [1–
4], and Vacating Room After Encryption (VRAE) [5–7]. In
RRBE methods, the content owner liberates space for the data
in the media in a preprocessing step. While in VRAE meth-
ods, the media is first encrypted by the owner and the data
hider can then embed the data by modifying the encrypted
media.

In particular, several methods based on public key ho-
momorphic cryptosystems for image security have been pro-
posed. These methods can be divided into two categories:
those based on the Paillier cryptosystem [8–13], and those
which use a post-quantic cryptosystem and exploit the Learn-
ing With Error (LWE) problem [14, 15]. Homomorphic cryp-
tosystems are beneficial in signal processing as they translate
a mathematical operation in the clear domain to another oper-
ation in the encrypted domain. Note that they are also proba-
bilistic.

Recently, the popularity of 3D objects has greatly in-
creased and with it, the need to secure 3D objects. Despite
the development of applications for 3D data hiding in the
encrypted domain, it remains a relatively unexplored research
area. To our knowledge, there exists very few RDH-ED meth-
ods for 3D objects. In 2018, Jiang et al. proposed a RDH-ED
method for 3D objects where data is embedded in encrypted
vertices designated for embedding [16]. This was later im-
proved by Yin et al. [17] in 2019, who suggested using an
error prediction protocol to designate the vertices to be em-
bedded before the encryption. In 2018, Shah et al. proposed
a two tier RDH-ED for 3D objects using the Paillier cryp-
tosystem [18]. The first tier of data hiding is completed by
using the Paillier cryptosystem’s homomorphic properties to
perform a histogram expansion and shifting in the encrypted
domain. The second tier of data hiding is done by using the
Paillier self-blinding property.

In this paper, we propose a two tier homomorphic RDH-
ED method based on the Paillier cryptosystem for 3D objects.
Our method preserves the original format of the 3D object and
there is no size expansion, all without the need for an auxil-
iary file. In order to have a large key size, vertices are grouped
into blocks without reducing the payload. After decryption,
the reconstructed 3D object remains marked with the first tier
message. It is also possible to recover the first tier message as
a ciphertext in the encrypted domain. Note that a smaller sec-
ond tier message can be embedded in the encrypted domain.
Our method is reversible as we conserve the visual quality of
the original 3D object.
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Fig. 1: Overview of the encoding phase of the proposed method.

2. PROPOSED METHOD

In this section, we describe our proposed method of homo-
morphic two tier reversible data hiding in encrypted 3D ob-
jects. Fig. 1 presents the overview of the encoding phase of
the proposed method. The vertices are grouped into blocks,
noted B and bits which we wish to use to embed the message
are set to zero. The 3D object and the first tier message are
both encrypted with the same public key and are multiplied in
the encrypted domain in order to be equivalent to an addition
in the clear domain, using the Paillier cryptosystem homo-
morphic property. A smaller second tier message can also be
embedded.

We note the original 3D object O, which is represented is
by a set of vertices. Each vertex consists of three coordinates
x, y and z, where each of which can be represented by a 32-
bit floating point fp, which consists of a sign s (1 bit), an
exponent e (8 bits) and a mantissa mant (23 bits) where:

fp = (−1)s ×mant× 2e−127. (1)

2.1. Preprocessing

The encryption is performed exclusively on the 23-bits of the
mantissas of each coordinate, which are transformed into in-
tegers. This means that the part of each vertex v we want to
encrypt is encoded with 23× 3 = 69 bits.

In order to have a key sufficiently large to be secure, ver-
tices are grouped into blocks B of size b vertices per block.
Each block therefore consists of 69b bits. A block of vertices
is then constructed by first grouping the MSB-0 of each vertex
coordinate, then the MSB-1, until finally the LSB. To avoid
a size expansion of the encrypted vertex block in relation to
the clear vertex block, we encrypt only k MSB among the
2k + 1 bits of the vertex block.

Fig. 2 illustrates the preprocessing, the encryption and the
decryption of a vertex block. We note α the payload in bits
per block. To avoid a bit overflow when we embed a segment
of a message in a blockB, as illustrated in Fig. 2, α bits of the
block B are set to zero in the clear domain. If k is the number
of bits to encrypt in a block B, then the α LSB among the
k MSB are set to zero, as illustrated in Fig. 2. We note B′ the
markable vertex block andO′ the corresponding markable 3D
object.

Fig. 2: Preprocessing, encryption and decryption of a vertex
block B.

2.2. Encryption

We set the size of the encrypted vertex block 69b = 2k+1 bits
and the block size b has to be odd. To encrypt the k MSB of
the block B′, which we note B′kMSB

, we use:

E(B′kMSB
) = gB

′
kMSB × rn mod n2, (2)

where (n, g) is the public key, r randomly generated, where
r ∈ (Z/nZ)∗, and E(·) the Paillier encryption function.

We then obtain the 2k+1 encrypted bits which substitute
all the bits of B′, as illustrated in Fig. 2. We note B′e the
encrypted markable vertex block and O′e the corresponding
encrypted markable 3D object.

2.3. Data hiding in the encrypted domain
In order to embed a message m in each block B′e of the en-
crypted markable 3D object O′e, we use the Paillier additive
homomorphic property, which indicates that a multiplication
in the encrypted domain is equivalent to an addition in the
clear domain. Therefore, to embed the message segment m,
we have:

B′ew = E(B′kMSB
)× E(m) mod n2, (3)

where B′ew is the first tier marked encrypted block, E(·) is the
Paillier encryption function and E(B′kMSB

) = B′e.
We note O′ew the corresponding first tier marked en-

crypted 3D object. Note that since this multiplication in the
encrypted domain is equivalent to an addition in the clear

 



(a) Original 3D
object O

(b) Encrypted markable 3D
object O′

e

(c) First tier marked encrypted
3D object O′

ew

(d) Two tier marked encrypted
3D object O′

eww′

(e) Reconstructed
marked 3D object
Ow

Fig. 3: Obtained results on the 3D object Caesar, with a payload of 13.603 (13.5 + 0.103) bpv.

domain, and since we have already cleared space for m by
setting the α bits of the payload to 0, this operation is equiva-
lent to an α LSB substitution in the clear domain:

D(E(B′kMSB
)× E(m) mod n2) = B′ +m. (4)

In order to preserve the visual quality of the original 3D
object, Beugnon et al. showed that we need to conserve at
least 23−16 = 7 useful bits per coordinate (u), which results
in 3u = 21 MSB per vertex [19]. By respecting this, we do
not compromise the visual quality of the decrypted 3D object.
Therefore, α, the payload of a block B′ew in bits is:

α = k − 3u× b bits. (5)

This results in a payload p, in bits per vertex (bpv) of:

p =
α

b
bpv. (6)

With our proposed approach it is also possible to embed
a second tier message m′ of up to 3 bits per vertex block,
which exists only in the encrypted domain. The reconstructed
marked 3D object in the clear domain remains unchanged by
the second tier message. We note Oeww′ the corresponding
two tier marked encrypted 3D object.

2.4. Data extraction and decryption
We note B′eww′ the two tier marked encrypted vertex block.
To extract the first tier message m in the encrypted domain,
we multiply B′eww′ by the multiplicative modular inverse of
B′e, corresponding to the encrypted block markable by data
hiding and since we have already cleared space for m:

D(B′eww′ ×B′e
−1

mod n2) = m. (7)

We specify that in this case the private key (µ, λ) is
needed in order to retrieve m. The two tier marked encrypted
3D object O′eww′ is decrypted using the private key (µ, λ):

D(B′eww′) = L(B′eww′
λ
mod n2)× µmod n, (8)

where D(·) is the Paillier decryption function and L(x) =
x−1
n , where x ∈ N∗.

The decryption of the 2k + 1 bits of the block B′eww′ re-
sults in the original k MSB of the block B′, as illustrated in
Fig. 2. These bits replace the k MSB in the encrypted vertex
block to construct Bw. This gives us the reconstructed first
tier marked 3D object Ow. The first tier message can then be
extracted from Ow in the clear domain.

3. EXPERIMENTAL RESULTS

3.1. Performance on a large dataset

We tested our method on the Princeton dataset [20] which
consists of 380 different 3D objects. In order to be secure and
for real life applications, we need a public key (n, g) where
the size of n is at least an estimated 1000 bits. Therefore,
we group the vertices into blocks of size b = 29 vertices per
block, which gives us a key size of 1001 bits. Fig. 3 represents
the 3D object Caesar after encryption, the first and second tier
of data hiding and decryption, where the Hausdorff distances
are 0.5073 for O/O′e, 0.6478 for O/O′ew, and 4.157 10−3 for
O/Ow. With blocks of size b = 29 vertices, we obtain a first
tier payload of 13.5 bpv and in order to limit the complexity
we set the second tier payload to 3 bits per block, correspond-
ing to a total payload of 13.603 bpv.

Princeton O/O′e O/O′ew O/Ow
Mean 0.4677 0.4686 3.769 10−3

Median 0.4833 0.4830 3.744 10−3

St. Deviation 0.1101 0.1100 0.443 10−3

Table 1: Hausdorff distances obtained when our method is
applied to the 380 objects of the Princeton dataset [20].

Table 1 presents the Hausdorff distances when we com-
pare the original 3D object O with the encrypted 3D object
O′e, the marked encrypted 3D object O′ew and finally the
marked decrypted 3D object Ow.

We observe that O/O′e and O/O′ew have very similar
Hausdorff distances, represented in Table 1. Therefore we

 



Features
Methods Encryption Size Auxiliary Payload Data Marked

expansion file (bpv) error 3D object
Jiang et al. [16] Exclusive-or No No 0.37 Yes No
Shah et al. [18] Paillier cryptosystem Yes No 6 (3+3) No Yes
Yin et al. [17] Exclusive-or No Yes 16.25 No No

Proposed Paillier cryptosystem No No {1-13.5} + {0-3} No Yes

Table 2: Feature comparison between our proposed method and other existing state-of-the-art methods.

Methods Encrypted domain payload (bpv) Clear domain payload (bpv) Mean HD (10−3)
Jiang et al. [16] 0.37 ± 0.05 0 1.01 ± 0.046
Shah et al. [18] 6 (3+3) 3 0.209 ± 0.176
Yin et al. [17] 16.25 ± 1.62 0 (7.325 ± 1.93) 10−3

Proposed {1 - 4} (1 + {1 - 3 }) 1 0.280 ± 0.219
Proposed 10 (7 + 3) 7 1.15 ± 0.911
Proposed 16 (13 + 3) 13 3.94 ± 2.43

Table 3: Comparison of the payload in both encrypted and clear domains, and of the distortion between our method and three
significant current state-of-the-art approaches for the four 3D objects Beetle, Mushroom, Mannequin and Elephant.

can conclude that the content of the 3D object remains secure
independently of whether there is an embedded message or
not. Moreover, the median Hausdorff distance of O/Ow is
3.744 10−3, which indicates that the resulting marked 3D
object Ow is very similar to the original 3D object O. We
note that the mean distance is similar to the median distance.

3.2. Comparisons with previous work

Table 2 and Table 3 present comparisons between our pro-
posed method and three existing state-of-the-art methods [16–
18]. In particular, Table 2 shows that our proposed method is
the only one to avoid size expansion, an auxiliary file and data
error. Note also that our method is able to generate a marked
3D object in the clear domain. We note that the payloads of
the methods of Jiang et al. [16] and Yin et al. [17] are the av-
erage payloads of the four 3D objects, as the payloads of these
methods depend on the number of vertices eligible for embed-
ding. The payloads of our proposed method and of Shah et al.
are both divided into the payload in the clear domain and the
possible payload in the encrypted domain. While both the
proposed method and the method of Shah et al. [18] produce
a marked 3D object in the clear domain, the proposed method
has no size expansion and achieves a significantly higher first
tier payload.

Table 3 shows comparisons in terms of Hausdorff dis-
tance and payloads in the encrypted domain and in the clear
domain when applied to four 3D objects Beetle, Mushroom,
Mannequin and Elephant. For this experiment, in order to be
comparable with state-of-the-art methods, we encrypt these
four 3D objects vertex by vertex. We note that the method of
Yin et al. [17] has the best performance in terms of Hausdorff
distance, but this is at the cost of an auxiliary file and a re-
constructed 3D object without a message. While the methods

of Yin et al. [17] and Jiang et al. [16] seek to reconstruct the
original 3D object, the method of Shah et al. [18] and the pro-
posed method generate a reconstructed marked 3D object and
therefore do not seek to be statistically identical to the origi-
nal 3D object. With our method, note that the reconstructed
marked 3D object remains visually identical to the original
3D object. Our method is the only one to conserve a high
payload in the clear domain. Once the 3D object is recon-
structed, it remains marked with the first tier message of up to
13.5 bpv.

4. CONCLUSION

In this paper, we proposed a new high capacity two tier RDH-
ED for 3D objects based on the Paillier cryptosystem. We
describe a method which conserves the original format and
avoids both size expansion and the use of an auxiliary file,
while maintaining the visual quality of the 3D object. Our
method uses a large key size, which makes it suitable for real
life applications. Most importantly, our approach is a two
tier method in which the first tier message can be extracted in
either the encrypted domain or in the clear domain, producing
a reconstructed 3D object marked with up to 13.5 bpv. The
second tier message could be used as a flag in the case of
multi-embedding.

In future work, the proposed method could be further im-
proved by ordering the coordinates within the vertex block
B according to the ascending order of the three exponents e
of the vertex coordinates in Eq. 1. This would lead to less
distortion in the case where the same number of bits are not
encrypted in every coordinate.
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