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ABSTRACT
Increasing shape-bias in deep neural networks has been
shown to improve robustness to common corruptions and
noise. In this paper we analyze the adversarial robustness
of texture and shape-biased models to Universal Adversarial
Perturbations (UAPs). We use UAPs to evaluate the robust-
ness of DNN models with varying degrees of shape-based
training. We find that shape-biased models do not markedly
improve adversarial robustness, and we show that ensembles
of texture and shape-biased models can improve universal ad-
versarial robustness while maintaining strong performance.

Index Terms— Universal adversarial perturbations, ad-
versarial machine learning, deep neural networks

1. INTRODUCTION

Advances in computation and machine learning have enabled
Deep Neural Networks (DNNs) to become the algorithm of
choice for large-scale image classification [1, 2, 3]. To further
understand the types of features that computer vision DNNs
learn, [4, 5] we have investigated the effect of texture and
shape-bias that models have on their performance. Evidence
from [4] and [5] demonstrate that it is sufficient for models to
use image textures to achieve high accuracy on ImageNet [6].

Geirhos et al. propose Stylized-ImageNet, a modified Im-
ageNet dataset that requires recognizing object shapes rather
than textures to discriminate images in the dataset [5]. They
claim that biasing models towards shapes improves their ro-
bustness, and they show that these shape-biased models have
improved robustness against common corruptions. However,
to have a complete characterization of a model’s robustness,
it is important to also study the worst-case distortions. These
worst-case distortions come in the form of adversarial pertur-
bations: visually imperceptible changes to inputs that result
in images that fool the model [7, 8]. Despite their success,
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DNNs have been shown to be extremely sensitive to adver-
sarial perturbations as they can be made to misclassify images
with very high confidence. Adversarial attacks remain a rele-
vant threat to shape-biased models as these attacks can greatly
undermine the integrity and trust in model predictions.

Universal adversarial perturbations (UAP) are a particu-
larly potent class of adversarial attacks where a single UAP
can fool a model on a large set of input data [9]. From a ma-
chine learning perspective, UAPs reveal global features that
models are sensitive to [10, 11]. These global features are
worth studying as they can reveal underlying features that
models use for classification. From a security perspective,
UAPs pose a worrying threat as they can transfer across mod-
els [12, 13], enable physically-realizable attacks on computer
vision systems [14, 15, 16], and can be used to facilitate ef-
ficient black-box attacks on DNNs [13]. Recent work shows
that there are some improvements in adversarial robustness to
per-instance attacks by increasing shape-bias [17], however
our results show that this is not the case for universal attacks.

In this work, we evaluate texture and shape-biased mod-
els’ robustness to universal attacks, propose targeted UAPs
as a method for visualizing and analyzing their most vulner-
able features, and finally demonstrate that ensemble voting
with these models can maintain clean performance whilst im-
proving on worst-case performance against universal attacks.
Our analysis with UAPs reveals the extent to which increased
shape-bias improves adversarial robustness of models to uni-
versal attacks. The following are our contributions:

1. We show that shape-biased models do not mitigate uni-
versal attacks, but they instead shift the set of features
the models are vulnerable to.

2. We evaluate the distribution of targeted UAPs for tex-
ture and shape-biased models, and visualize the result-
ing targeted UAPs to show differences in the appear-
ance of resulting perturbations.

3. Finally, we propose ensembles of texture and shape-
biased models to maintain strong performance and im-
prove robustness to universal attacks.

We make code available at https://github.com/
kenny-co/sgd-uap-torch.
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Fig. 1. Untargeted UAPs generated for different models, from left to right: ResNet50 [3] models for various training regimes,
VGG19 [2], and DenseNet121 [18]. Complete details for how each ResNet50 model was trained are in Section 2.

2. BACKGROUND

In this section, we introduce shape-biased models and univer-
sal adversarial perturbations. The Stylized-ImageNet dataset
was created to train models to have higher shape-bias. To
study the robustness of these models with varying degrees of
shape-biased training, we first discuss how UAPs are gener-
ated and the metrics we use to measure their effectiveness.

2.1. Shape-biased Training

ImageNet is a widely used computer vision benchmark with
1,000 distinct object categories [6]. Geirhos et al. created
a shape-biased dataset in Stylized-ImageNet, which replaces
textures of ImageNet images while retaining the global shape
of the original objects [5]. This dataset requires a model to use
shapes rather than textures to identify and discriminate ob-
jects. Stylized-ImageNet is generated by applying style trans-
fer of different uninformative textures onto ImageNet images.
The complete details of its generation are described in [5].

Models. We use the ResNet50 [3] architecture with vary-
ing degrees of training on ImageNet and Stylized-ImageNet.
This model takes input images with dimensions 224×224×3.
We test UAPs on these four ResNet50 models, named accord-
ing to the training dataset used: only ImageNet (IN), only
Stylized-ImageNet (SIN), both Stylized-ImageNet and Ima-
geNet (SIN+IN), and both Stylized-ImageNet and ImageNet,
and then fine-tuned on ImageNet for accuracy (SIN+2IN).
Complete training details for each model are given in [5].
From here onwards, we use IN and SIN to refer to the models
rather than the datasets.

2.2. Universal Adversarial Perturbations

Adversarial perturbations are universal when the same noise
pattern can be successfully applied across a large fraction of
the input data to fool a model [9].

Stochastic gradient descent. We use the Stochastic Gra-
dient Descent (SGD) algorithm for generating UAPs. SGD
is a variation of the Projected Gradient Descent (PGD) at-
tack proposed in [19], but optimized over batches instead of
individual images. SGD was chosen as it has been shown

to have the best universal evasion rates over other methods
[20, 21], and it is a more efficient algorithm with better con-
vergence guarantees than the original UAP generation algo-
rithm iterative-DeepFool [9].

SGD optimizes the objective
∑

i L(xi + δ), where L is
the model’s training loss, Xbatch = {xi} are batches of inputs,
and δ ∈ P are the set of considered perturbations. Gradi-
ent updates to δ are done in batches Xbatch in the direction
of −

∑
i∇L(xi + δ). Pixel values of resulting adversarial

examples x+ δ are clipped to the range [0, 255].
In this study, the perturbation constraints take the form

of an `p-norm. The set of perturbations can be written as
P(p, ε) = {δ | ‖δ‖p ≤ ε} for a chosen norm p and value ε.
We choose p =∞ as it is the standard in the UAP and adver-
sarial machine learning literature. The `∞-norm constraint on
δ ensures that the perturbation is small and does not greatly
alter the visual appearance of the resulting image.

Fooling rate. We first consider the case where the goal
of the UAP is to maximize the number of misclassifications.
This is referred to as an untargeted UAP, as there is no specific
target output. Its effectiveness is measured by its fooling rate,
which is the proportion of inputs that are misclassified by the
model when the UAP is applied. For targeted UAPs, the goal
is to have as many inputs classified towards a desired target
class ytarget. The targeted fooling rate (tFR) is the proportion
of inputs classified as ytarget when the UAP is applied.

3. ROBUSTNESS OF SHAPE-BIASED MODELS

In this section, we compare the robustness of ResNet50
models under different training regimes by measuring the ef-
fectiveness and transferability of untargeted UAPs generated
from the SGD attack. Our results show that models trained
on Stylized-ImageNet are still as vulnerable to these UAPs as
models trained on ImageNet.

Experimental setup. We consider the four ResNet50
models as outlined in Sec. 2.1. We generate and optimize
the SGD-based perturbations on each model for various `∞-
norms (2 ≤ ε ≤ 12) over the entire 50,000 image ImageNet
validation set. The UAP literature often focuses on ε = 10,
so we use this as our primary benchmark, but we also provide
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Fig. 2. Fooling rates (in %) of untargeted UAPs for different perturbation values ε. Plot titles indicate the evaluated model.

results for other values to measure its effectiveness under dif-
ferent perturbation constraints. For each UAP, we evaluate its
fooling rate on the model it was generated from (white-box
attack) and on the three remaining models (transfer attack).

3.1. Transferability Across Training Regimes

White-box attacks, where the UAP is generated from the
tested model, achieve high success rates. They consistently
reach greater than 90% fooling rate for ε = 10 on all models
as shown in Figure 2. This shows that Stylized-ImageNet
training does not necessarily improve the model robustness
to universal attacks. For transfer attacks, where the UAP is
generated from a model different from the evaluated one, the
fooling rate consistently rises for ε > 4. SIN appears to be
the most resilient to transfer attacks against all other models
trained on the ImageNet dataset. However, this robustness to
transfer attacks comes at the cost of having the highest clean
error on ImageNet.
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Fig. 3. Confusion matrix showing the fooling rates (in %) of
untargeted UAPs with ε = 10 when applied as transfer attacks
to different models. VGG19 and DenseNet121 are labeled as
V19 and D121 respectively.

That white-box UAPs are still effective against SIN shows
that Stylized-ImageNet training does not diminish the effects
of UAPs. Instead, Stylized-ImageNet training shifts the set of
features the model has learned, making it vulnerable to a dif-
ferent set of features from what the ImageNet-trained models
have learned. Hence, what features models are most vulner-

able to depends more on the data distribution of its training
dataset. It is interesting to note in Figure 2 that UAPs from IN
and SIN+2IN have near-identical effectiveness against SIN.

Impact of fine-tuning. Although SIN+2IN achieves the
best clean dataset accuracy, our results show that its response
to UAPs is very similar to that of the model IN that was
trained only on ImageNet. In Figures 2 and 3, the fooling
rates of UAPs from IN and SIN+2IN are highly similar across
all tested models. Additionally, there are large visual similari-
ties between the UAPs generated for SIN+2IN and IN as seen
in Figure 1. These suggest that there are large similarities in
the features that SIN+2IN and IN are vulnerable to, despite
the additional training on Stylized-ImageNet. The additional
fine-tuning on ImageNet for SIN+2IN could have resulted in
the model “overfitting” where it no longer uses features it has
learned from both datasets, and instead focuses only on fea-
tures learned from ImageNet.

3.2. Transferability Across Architectures

We now consider the transferability of the UAPs from these
ResNet50 models to other architectures: DenseNet121 [18]
and VGG19 [2]. Like ResNet50, these models take input
images of dimension 224 × 224 × 3 and have comparable
clean dataset accuracies. Compared to ResNet50, VGG19 has
fewer layers, whilst the DenseNet121 has more layers and
uses dense blocks. The architectures have approximately 8,
25, and 140 million parameters for DenseNet121, ResNet50,
and VGG19 respectively. We focus our analysis on attacks
with ε = 10.

In Figure 3, VGG19 is noticeably more vulnerable to all
UAPs, whereas DenseNet121 is more resilient to the UAPs
from the other models. When focusing only on the ImageNet-
trained models (IN, VGG19, DenseNet121), we see that the
architectures with more layers and fewer parameters appear to
be more robust. Compared to IN, SIN does not improve on the
transferability of UAPs to these other architectures. However,
the UAP from SIN+IN has noticeably higher transferability
against all models, achieving at least 70% fooling rate against
each model. We hypothesize that SIN+IN has learned more
generalized representations because it was trained equally on
both ImageNet and Stylized-ImageNet without overfitting to
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Fig. 4. An example of a targeted UAP and with its tFR for
each model it was generated for.
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Fig. 5. Distribution of tFR of targeted UAPs on the ResNet50
models, with one UAP for each ImageNet class labels.

either, thus allowing it to have a more potent transfer attack
to the other model architectures.

3.3. Effectiveness of Targeted Universal Attacks

We now show how targeted UAPs can be used to visualize
and analyze the sensitivity of the ResNet50 models to UAPs
for each class label. We omit the analysis for SIN+2IN as its
robustness to universal attacks is highly similar to that of IN.

Targeted UAPs are generated for each of the 1,000 Im-
ageNet class labels with ε = 10 on each of the ResNet50
models and their effectiveness is measured by their targeted
fooling rate (tFR). Figure 4 shows an example of how the dif-
ferent training regimes result in targeted UAPs with differing
visual appearances despite targeting the same class.

Figure 5 shows that the tFR ranges from approximately
30-80% and the majority of the 1,000 targeted UAPs for each
model are centered the around 50-70% tFR range. What
stands out is that SIN+IN appears to be slightly more robust
to targeted UAPs as its tFR distribution is shifted to the left
when compared to IN and SIN. Since SIN+IN blends ele-
ments from both datasets, its larger and more diverse training
may have made it more robust to targeted UAPs.

4. MITIGATING ATTACKS WITH ENSEMBLES

Based on results from the previous section, we test an en-
semble voting mechanism to improve the overall robustness
to universal attacks and maintain clean performance. This

would make sense as UAPs across the three models (IN, SIN,
SIN+IN) do not transfer perfectly and their targeted UAPs ev-
idence some diversity in visual appearance and effectiveness.

Experimental setup. To combine IN, SIN, and SIN+IN,
we consider two ensemble voting schemes: a hard voting
scheme where the ensemble outputs the majority class la-
bel, and a soft voting scheme where the ensemble outputs the
class label with the highest average probability after the soft-
max layer. For both voting schemes, the ensemble outputs no
prediction if there is no majority. To compare the ensemble
scheme with the original models, we measure their accuracy
on the clean dataset and the lowest accuracy achieved on any
of the UAPs generated so far at ε = 10. This is to consider
the worst-case robustness of these models to universal attacks.
For IN, SIN, and SIN+IN, this would be their accuracy against
their corresponding white-box untargeted UAP.

Table 1. Accuracy (in %) of ResNet50 models and ensembles
for the clean ImageNet validation set and on the worst-case
UAP at ε = 10. Highest model accuracy is highlighted.

Model Clean Worst-case UAP
IN 76.13 7.50
SIN 60.18 7.65
SIN+IN 74.59 8.33
Ensemble (hard) 73.24 17.25
Ensemble (soft) 76.02 20.37

Results. In Table 1, both ensembles improve on the ro-
bustness to the worst universal attack when compared to the
individual models, with soft voting achieving the highest ac-
curacy of 20.37%, more than 10 points better than the indi-
vidual models. The soft ensemble also achieves a clean ac-
curacy of 76.02%, which is very close to the highest clean
accuracy of IN at 76.13%. This demonstrates that the en-
semble with soft voting is able to maintain clean accuracy
while greatly improving adversarial robustness to universal
attacks. Although the adversarial robustness of the ensem-
ble could still be improved, this is a promising direction and
demonstrates that ensemble methods can improve adversarial
robustness work while maintaining clean accuracy.

5. CONCLUSION

We study texture and shape-biased models through the lens of
universal adversarial robustness and show that shape-biased
models are as vulnerable to universal attacks as texture-biased
models. We demonstrate how UAPs can be used to better
evaluate the robustness of models with differing degrees of
texture and shape-biased training. Finally, we propose en-
sembles of texture and shape-bias models and show that it
can maintain clean performance while improving on univer-
sal adversarial robustness.
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