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ABSTRACT

Point clouds are among popular visual representations for im-
mersive media. However, the vast amount of information gen-
erated during their acquisition requires effective compression
for practical applications. Although relevant activities from
standardization bodies have led to state-of-the-art compres-
sion using conventional methods, learning-based encoders
have recently emerged as promising solutions with compara-
ble performance while offering additional attractive features.
Yet, there is still a large unexplored space for research that
can lead to further advances. In this paper, we propose a
block prediction module for bit-rate reduction of geometry-
only point clouds. Our method exploits spatial redundancies
at the decoding stage between block partitions in the point
cloud, and predicts a query block using Generative Adver-
sarial Networks. Results show performance improvements
of the objective metrics at low bit-rates, after integration in a
baseline auto-encoder architecture.

Index Terms— Point cloud compression, auto-encoder

1. INTRODUCTION

Point cloud imaging has emerged as a promising visual data
representation for modern 3D communication systems and
information technologies. In this type of content, the scene
topology is defined by points spanning throughout the three-
dimensional space, with optional attributes that describe their
appearance, such as color values and normal vectors, among
others. Despite their flexible nature, a huge amount of infor-
mation is required for faithful scene representation, which in
turn implies the need for efficient compression solutions in
most practical situations.

Anticipating the potential and the wide range of use-cases
for this type of visual data, relevant activities have been car-
ried out during the last few years by both JPEG and MPEG
standardization committees for the establishment of standards
that will enable a common ground and assist an efficient de-
ployment of point cloud technology into the market [1, 2].
These activities have also enabled additional efforts for the
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development of novel compression technologies, triggering
further research by the scientific community and industry.

Compression solutions found in the literature today can
be classified as (i) model-based, (ii) projection-based, or (iii)
deep learning-based. The first category operates on the point
cloud domain, making use of efficient data structures, hand-
crafted transforms, and prediction algorithms to reduce the
data size. The second involves methods making use of 2D
encoding algorithms applied to projected views, or patches
of a point cloud. The third category relies on artificial neu-
ral network architectures that learn data-driven transforms af-
ter training, and apply them for encoding the queried models.
The latter denotes newly introduced approaches that were in-
spired by the remarkable results observed by corresponding
2D imaging solutions, and are expected to be widely explored
in the near future.

In this study, we propose a neural network architecture
for compression of point cloud geometry, introducing a pre-
dictive coding module at the decoder stage. To respect limita-
tions of computational resources, a point cloud is partitioned
into blocks and each block is fed into the network, similarly
to other current auto-encoding solutions. A block is either en-
coded independently, or predicted by its neighbors, which re-
sembles the underlying working principle of inpainting. This
decision is based on the local topology of the model and the
quality of the reconstructed block. Results show the proposed
prediction module leads to performance gains at low bit-rates.

The next sections are structured as follows: first, we re-
view related works on learning-based point cloud coding; the
proposed prediction method is then described followed by
presentation and discussion of results. The paper is then con-
cluded with directions for future.

2. RELATED WORK

Examples of model-based compression include [3] and [4],
which propose octree-based progressive compression that
rely on approximations of the underlying surfaces to predict
neighboring occupancy. Denser shape approximations after
octree decomposition are enabled by reconstructing the un-
derlying surface using triangular primitives, also known as
“Triangle Soup” (TriSoup), as described in [5], or planar sur-
faces, as proposed in [6]. The MPEG Geometry-based Point



Cloud Compression (G-PCC) test model [7], for geometry
coding belongs to this category.

Among projection-based algorithms we can find the
MPEG Video-based Point Cloud Compression (V-PCC) test
model [8]. The latter employs HEVC to encode the two video
sequences generated to capture geometry and texture infor-
mation. In more recent studies, algorithms to improve the
encoding efficiency of V-PCC have been proposed, based on
padding of projected patches [9], and better predictions of the
motion vectors [10].

Deep learning-based approaches commonly exploit auto-
encoding architectures that target compression of geometry-
only information in a block-by-block basis. Two early studies
are presented in [11, 12], using shallow architectures com-
posed of convolution and de-convolution layers for analysis
and synthesis. The impact of several parameters added to
the initial version of the former network is evaluated in [13].
In [14], a rate-distortion performance analysis is conducted on
the latent space of [12], which is enriched with a hyper-prior
and the possibility of explicit quantization in [15]. In [16],
a deeper auto-encoding architecture is proposed, based on
3D convolution layers stacked with Voxception-ResNet struc-
tures and a hyper-prior. In [17], an encoding scheme relying
on folding of a 2D grid onto a point cloud is proposed, with
the attributes of the latter being mapped on top of it. In [18],
geometry and color information is encoded directly in the 3D
domain by extracting features from regular grids, using 3D
convolutions and capturing spatial redundancies. The objec-
tive of this paper is not to assess the performance of the above
approaches.

3. PROPOSED METHOD

3.1. Overview

Our work consists in a predictive coding module that can
be integrated into any block-based point cloud compression
algorithm that works with voxel blocks of fixed size. In
this paper, we combine it with the geometry-only version
of the learning-based solution proposed in [18]. One dis-
advantage of the baseline implementation is that it does not
exploit spatial redundancies between adjacent blocks. The
proposed method enhances the baseline by allowing predic-
tion of blocks at the decoding stage using already decoded
neighbors. The predicted blocks are therefore excluded from
the encoding process and corresponding bits are not added to
the bitstream, thus, reducing the bit-rate. To limit distortions
within an acceptable range, a labeling process is implemented
at the encoder stage to decide which blocks are encoded and
which are predicted. At the decoder stage, a learning-based
architecture is employed to predict the non-encoded blocks.
The high level architecture of our compression algorithm is
presented in Figure 1.
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Fig. 1. Block diagram of the proposed method.

3.2. Block labeling module

The block labeling module consists of three criteria that are
employed to classify voxel blocks as encoded or predicted.
All criteria must be met for a block to be labeled as predicted.

During the partitioning process of the input point cloud,
each block receives an integer index (i, jp, kp) representing
its position in the 3D space. The first criterion establishes that
the sum of these three indexes has to be an odd number, ensur-
ing that if a block with index (i, s, ks) is set to be predicted,
all of its six direct neighbours with indexes (i, =+ 1, jp, ks),
(v, jb £ 1, kp) and (ip, Jb, ks £ 1) will be encoded.

The second criterion specifies that one predicted block
must have at least three occupied neighbours. Otherwise, it
is considered that the available information is not sufficient
for a block to be predicted from its surroundings.

Finally, the distortion between a predicted block and the
corresponding block from the original point cloud should not
exceed a pre-set threshold. The distortion is quantified by
the symmetric mean squared point-to-point error [19], while
the threshold is manually specified. The prediction module
generates all blocks selected by the first two criteria at the
encoder side, and blocks with error lower than the threshold
are labeled as predicted.

3.3. Block prediction module

The prediction module operates at the decoder stage and gen-
erates the blocks labeled as predicted from their neighbours.
It is based on a Generative Adversarial Network that takes
as input a macro-block with empty voxels in the center and
is trained to generate that same macro-block with the cen-
tral region filled. The missing region at the center of the
macro-block corresponds to the block to be predicted, while
the neighbouring occupied voxels belong to decoded blocks
that were labeled as encoded. Note that only the direct neigh-
bours of a block are used for prediction, i.e. blocks that have
a shared face; thus, the macro-block side length is three times
larger than that of a block. After prediction, only the central
region of the output macro-block is kept, which corresponds
to the predicted block. An example of an input and a target
for prediction are illustrated in Figure 2.



(a) Input macro-block. (b) Target macro-block.

Fig. 2. Input (a) and target (b) macro-blocks for the prediction
module.

The selected architecture is similar to [20]. A genera-
tor is trained to produce a macro-block with the missing re-
gion filled, while a conditional discriminator can receive as
input either the generated macro-block or the reference, be-
ing trained to determine whether the input is real or not. This
value is also used in the loss function of the generator, which
is trained to fool the discriminator. During testing, only the
generator is used.

The generator is based on an auto-encoder architecture
with skipped connections between layers of same size at the
encoder and the decoder. The encoder is made of four 3D
convolutional layers that progressively reduce the size of the
input cubic macro-block from 96 to a feature space with size
4, using strides of 3 in the first layer and 2 in the following,
and an increasing number of filters of 32, 64, 128 and 256.
The decoder has a symmetric architecture using transposed
3D convolutions that re-scale the macro-block back to its in-
put shape, with 128, 64, 32 and 1 filters, respectively. At
the input of each layer of the decoder, the output with same
dimensions from the encoder is concatenated. On the bottle-
neck, two fully connected layers with 5000 and 8192 nodes
and ReLu activations are applied on the flattened output of
the encoder, followed by a reshaping layer that builds a cubic
block of size 4 and 128 channels that is fed to the decoder of
the generator. The encoder and decoder use LeakyReLu ac-
tivations, except for the last layer of the decoder that uses a
sigmoid.

Assuming that the input macro-block is z, the target is y,
and the output is %/, the discriminator takes as input a macro-
block with two channels, formed by the concatenation of x
and y or y'. The first is considered as real while the latter is
considered as fake. Its architecture is similar to the encoder of
the generator, with four 3D convolutional layers having twice
the amount of filters than the generator. It outputs a cubic
block of size 4 and 512 channels which is then reshaped to a
vector, similarly as in [20].

The loss function of the generator is composed of three
terms with weights controlled by the hyper-parameters 3 and
A, as depicted in (1).

lossg = (1—=8) - FL(arr,YrL) + B 108Sadv + A1 - l0SS1apr (1)

The F'L(-) is the same focal loss used in the baseline codec [18],
while the adversarial loss term [0ss,4, 1S given by (2),

1088qaw = —E[D(y'|2)] 2)

with E[-] indicating expectation, D the discriminator, and y’ |«
the concatenation of the output and the input of the generator.
Finally, the laplacian loss term [055;4y; is given in (3)

1 N N N
lossiap = 33 > > Y LW/ (0.5, k) - y(ij. k) ()

with IV set equal to 96 corresponding to the size of the macro-
block, (i, 7, k) € [0, 95] being the coordinates of a voxel in the
macro-block and L(+) depicting the discrete laplacian opera-
tion formulated as per (4).

L(y'(i,j, k) = =6 -y (i, 4, k) +y'(i — 1,4, k)+
Y(i+1,5,k) +y' (6, —LE) +y 6,5+ 1L,k)+ @)
y/(ivja k - 1) + yl(i’j7k + 1)

The laplacian loss term is proposed in order to take into
account the spatial distribution of the output of the generator.
Its introduction is motivated by the fact that the focal loss
has a limited capacity of capturing spatial context, since it
is calculated on each voxel separately without considering its
neighbours. The underlying assumption for the proposed term
is that the generated point cloud block should represent a thin
surface. Therefore, for voxels that are occupied at the target,
the generated value should decrease fast on the direction of
the normal of the surface. This condition is met if the value
of the second derivative on these voxels is negative and has a
large absolute value, which is achieved by the minimization
of the proposed term.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed coding method,
the HighResGC dataset assembled in [18] was employed,
which consists of 44 point clouds for training and 6 for test-
ing. Since the prediction scheme was designed for geometry-
only point clouds, the color attributes present in the models
of the dataset were ignored. For training purposes, the hyper-
parameter values of the generator loss function were set as
follows: 8 = 0.05, \; = 0.1, apy, = 0.95, ypr, = 2.
Moreover, the loss function of the discriminator was the same
as in [20]. Finally, the Adam Optimizer [21] was used with
b1 = 0.9, B2 = 0.999, learning rate of 5 - 10~* for the
generator and of 10~ for the discriminator.

The baseline codec was trained using 10000 randomly
chosen blocks with size 32 from the training set. Blocks with
less than 500 occupied voxels were discarded. Four values of
A were defined in the loss function to obtain different rate-
distortion trade-offs: {20, 100,500, 2500}. The prediction
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Fig. 3. Rate-distortion plots for two contents using metrics
D1 and D2.

module was trained with a dataset composed by macro-blocks
assembled using all blocks from the training set with their cor-
responding direct neighbours, excluding instances with less
than 500 points and less than three occupied neighbours. An
ablation study for the proposed laplacian loss term was also
performed. All point clouds from the test set were then com-
pressed and reconstructed using the baseline method, as well
as with the proposed prediction module trained with and with-
out the laplacian loss term. The values of the threshold for the
point-to-point metric used on the block labeling module were
setto 4,2, 1 and 0.5 for each ), respectively.

For each decoded point cloud, the PSNR values of the D1
(point-to-point) and D2 (point-to-plane) metrics were com-
puted using the MPEG software version 0.13.5. In order to
compute D2, the normals of the reference point clouds were
estimated with plane fitting using 10 nearest neighbours and
MeshLab v2020.06. The rate-distortion plots for two contents
of the dataset are reported in Figure 3.

Based on our results, we can observe that the prediction
method is performance-wise beneficial, mainly at low bit-
rates. For the highest bit-rates, almost no change is observed
when including the prediction module into the encoding pro-
cess. This can be explained by the lower threshold value used
for the point-to-point criterion on the block labeling process
at higher values of A\, which substantially reduced the number
of predicted blocks. Indeed, the percentage of blocks labeled
as predicted is 16%, 22%, 13% and 1% for \ equal to 20, 100,
500 and 2500, respectively. We also observe that the models
obtained with the prediction module trained with the lapla-
cian loss consistently achieve lower bit-rates for equivalent
distortion values.

The Bjontergaard-Delta bit-rate was computed using the
D2 PSNR metric in two distinct scenarios. The prediction

Models S1 S9 S3
bumbameuboi | -0.0105 | -0.0412 | 5.1128
guanyin -0.1518 | -0.6002 | 4.9281
longdress -0.2833 | -1.0154 | 4.4292
rhetorician -0.4183 | -0.9071 | 3.8445
romanoillamp | -0.2324 | -1.0789 | 4.5224
phil -0.4433 | -0.557 | 3.034

Table 1. Variation of the D2 PSNR in dB.

Models S1 S92 S3
bumbameuboi | -4.52 -6.7 10.61

guanyin -11.67 | -18.34 1.1
longdress -14.41 | -20.86 | -2.78
rhetorician -15.87 | -25.41 | -9.74
romanoillamp | -14.79 | -25.1 | -11.1
phil -12.21 | -14.08 | 6.49

Table 2. Variation of the bit-rate in (%).

module was compared both to the baseline codec and to itself
trained without the proposed laplacian loss term. We observe
an average bit-rate saving of -8.95% in the first case and of
-4.83% in the second, illustrating both the performance gain
of our method and of the laplacian loss.

In order to better evaluate the performance of the predic-
tion module at low bit-rates, Tables 1 and 2 present the bit-rate
and D2 PSNR gains, respectively, in three scenarios si, So
and s3. The first two compare the algorithm with and without
prediction for the two lower bit-rate levels. The third scenario
compares the lowest compression level of the baseline codec
to the second level of the codec with the proposed method.
Based on Table 2, we observe that for s; and so, we achieve
a bit-rate reduction always greater than 10% except for bum-
bameuboi, which has dissonant behaviour. This reduction is
accompanied by a drop on D2 PSNR, according to Table 1,
that doesn’t surpass 1.1 dB in any case. Moreover, we ob-
serve in s3 that for half of the test set, bit-rate reductions are
accompanied by quality improvements.

5. CONCLUSION

This paper proposes a predictive coding approach for geometry-
only point clouds. By using a learning-based module to pre-
dict blocks using information from its decoded neighbours,
the method allows a notable size reduction of the bitstream
without quality compromises at low bit-rates. Future work
can focus on improving the current method by adding to the
bitstream a residual representation of the difference between
predicted and original blocks, or by implementing partition-
ing schemes better suited for predictive coding.
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