
POLYNOMIAL TRAJECTORY PREDICTIONS FOR IMPROVED LEARNING
PERFORMANCE

Ido Freeman, Kun Zhao

Aptiv Services Deutschland GmbH
Wuppertal, Germany

<first name>.<surname>@aptiv.com

Anton Kummert

Faculty of Electrical, Information and Media Engineering
University of Wuppertal, Germany

kummert@uni-wuppertal.de

ABSTRACT
The rising demand for Active Safety systems in automotive
applications stresses the need for a reliable short-term to mid-
term trajectory prediction. Anticipating the unfolding path of
road users, one can act to increase the overall safety. In this
work, we propose to train neural networks for movement un-
derstanding by predicting trajectories in their natural form, as
a function of time. Predicting polynomial coefficients allows
us to increase accuracy and improve generalisation.

Index Terms— trajectory prediction, motion understand-
ing, autonomous driving, active safety.

1. INTRODUCTION

Reliably predicting the future movement of road users will
positively affect road safety, not only in completely au-
tonomous applications but also in current features such as
Autonomous Emergency Braking (AEB) or Adaptive Cruise
Control (ACC).

Traditionally, there has been an emphasis on detection and
recognition, with algorithms like MaskRCNN [1] showing a
good combination of accuracy and efficiency. However, de-
tection is not enough for a fully functional system. Consid-
ering the example of an ACC system, the detection and clas-
sification are merely the first steps in the pipeline. An ACC
system which anticipates its neighbours’ movements is able
to better prepare for events like cut-ins or sudden braking.

As with other tasks, this one was also enabled by public
datasets like the well studied NGSim dataset [2] and the more
recent, but with restrictive terms of use, HighD dataset [3].
While real-world data enjoys a high credibility, it should also
be used with care as it often features strong biases like region,
weather or time of day.

Looking at the publications in the field, one sees a general
agreement on the general framework for trajectory prediction.
Some, like [4], use Generative Adverserial Networks (GANs),
others, like [5], use Variational Auto-Encoders (VAEs).
There are also various attention mechanisms [[6], [4], [7]].
Yet, the general structure of an encoder-attention-decoder
model remains the same. Furthermore, the decoder predicts a

series of coordinates, representing the future spatial positions
of an agent at multiple temporal offsets, e.g., one, two and
three seconds into the future. These offsets are constant and
get hard-coded into the model during training.

Although convenient, these predetermined temporal off-
sets have a few drawbacks. First, the predicted coordinates are
predicted in parallel and are thus independent of each other.
That is, they are not confined to any sort of temporal consis-
tency. Trajectories jagged around the ground truth could po-
tentially result in undesired side effects. For predicting cut-in
events, for example, such jitters around a lane marker would
mean multiple possible intersections, making it harder to an-
ticipate the actual cut-in and thus reducing reliability. Sec-
ond, the prediction resolution of the fixed offsets is limiting.
Certain scenarios, e.g., congested traffic, require a higher pre-
diction resolution than a clear motorway.

In this work, we propose a novel framework for contin-
uous trajectory training and prediction with artificial neural
networks. Our main contributions are:

• An alternative output formulation for trajectory predic-
tion which better matches the nature of movement.

• An adjustment to the common uncertainty propagation
to allow for a continuous variance estimation.

• A novel training scheme for enhanced generalisation.

2. RELATED WORK

One of the first works in the field dates back to 1995, with
Helbing et al. proposing a model for pedestrian dynamics [8]
which defines attractive and retractive forces between pedes-
trians. A statistical approach for behaviour prediction in a
multi-agent environment was proposed by [9]. It was later
followed by [10] with a Kalman filter based approach.

More recent works mostly focus on environment un-
derstanding and the plurality of possible futures, i.e., multi-
modality. The former is represented by works as [11] and [12]
which proposed social pooling for multi-agent integration.
ChauffeurNet [13] modelled the environment as binary pixel

To appear in Proc. IEEE ICIP2021, September 19-22, 2021, Anchorage, USA © 2021 IEEE.

ar
X

iv
:2

10
1.

12
61

6v
2

 [
cs

.C
V

]
 1

6
Ju

n
20

21

masks which are convolved as an image. Finally, projects
such as [14] train end-to-end systems for steering decisions.

A slightly different strain of work looks into kinematic
constraints. Instead of learning the well studied rules of
physics from data, they are directly built into the network
by design, reducing the prediction to its variable parts. A
good overview is provided by [15], while [16] has more
recently modelled vehicle movement using the bicycle model
by predicting the acceleration and the steering angle.

This work proposes a loose variant of the latter class
of publications. Instead of a kinematic model, and similar
to [17], we predict continuous functions. Trained with our
random anchoring scheme, we improve generalisation while
being more accurate and flexible compared to coordinate
prediction.

Using neural networks for polynomial coefficients was
discussed before. In 2014, Andoni et at. predicted sparse
polynomials with increased robustness using neural net-
works [18]. More recently, [19] used polynomials for op-
tical flow and video stabilisation. Finally, [20] incorporated
polynomials into their network structure. Their polynomial
activation function in their generative model showed appeal-
ing results on a wide variety of tasks.

3. POLYNOMIAL PREDICTION FRAMEWORK

Our framework consists of three parts. Spatial position pre-
diction, variance estimation and the training scheme. These
are further discussed in this section.

3.1. Spatial Position Prediction

Assuming an arbitrary neural network, f(·), which takes in
a time series of states, sit ∈ S, of an arbitrary length, with
i ∈ N different agents including the ego vehicle. The goal is
to predict the trajectories of all agents for the next T frames,
with t0 being the current time step.

For normalisation, we use position increments, defining[
δxit, δy

i
t

]
=
[
xit, y

i
t

]
−
[
xit−1, y

i
t−1

]
. We follow the common

state definition sit =
[
δxit, δy

i
t, v

i
t, α

i
t, θ

i
t, l

i
t, ϕ

i
t

]
. I.e., position

increments, current velocity, acceleration, heading angle and,
finally, the polar coordinates to the ego agent, respectively.
Prior art defines the output of such a network as

f(S) = [x1, y1, x2, y2, . . . , xT , yT]. (1)

The origin of this coordinate system is the ego vehicle at the
current t0. We define our model’s output as

f(S) =
[
a1, . . . , adx , b1, . . . , bdy

]
= A ∪B. (2)

Meaning that our neural network predicts two sets of parame-
ters A = [a1, . . . , adx] and B =

[
b1, . . . , bdy

]
. These param-

eterize two polynomial functions, x(t) and y(t), of degrees

dx and dy , respectively, which describe the trajectory along
the time dimension. The polynomial form for x(t) is

x(t) =

dx∑
j=1

aj ∗ tj . (3)

The definition of y(t) is analogous. Furthermore, the 0th

(constant) coefficient is ignored since it represents the bias
on the current position which is, by definition, the origin.

3.2. Variance Estimation

Joint position and variance prediction, as discussed in [11]
and [21], is now a standard. Yet as we do not have predefined
prediction points, we have to adjust the formulation.

Predicting polynomial coefficients renders the formula-
tion of [21] inapplicable. We fix this by outputting the poly-
nomial coefficients [a1, . . . , adx] along with their respective
predicted standard deviations

[
σa1 , . . . , σadx

]
. Since the loss

is evaluated by sampling from the position polynomials, we
need to propagate the variances to a positional variance form.

Following [11], the respective covariance matrix cov(A)
is denoted as

cov(A) =

σ2
a1 0 . . . 0
0 σ2

a2 . . . 0
. 0
0 0 0 σ2

adx

 . (4)

In Equation 3, x(t) is a linear combination of polynomial co-
efficients aj . Given the covariance cov(A), the variance of
function x(t) at frame t is

var(x(t)) =
dx∑
j=1

σ2
aj ∗ (t

j)2. (5)

The axis-wise probability density function is then a Gaussian

P (x(t)) =

exp

(
−0.5 ∗

(
x(t)−µx,t√

var(x(t))

)2
)

√
var(x(t)) ∗ 2π

. (6)

µx,t is the respective ground truth observation for the lat-
eral axis at time t. Finally, the negative log probability is used
as a loss and, surely enough, the term for y(t) follows analo-
gously.

3.3. Training Scheme

The polynomial output layers also allow for an improved
training scheme. Evaluating the predictions for a series of
temporal offsets requires a simple vector-matrix multiplica-
tion and results in a series of spatial coordinates.

Nevertheless, training a high order, non-linear function on
a few fixed offsets is the textbook example of over-fitting. As

2

discussed in Section 4, when trained with two fixed anchors
(coordinates at fixed temporal offsets), the model strongly
over-fits the desired offsets. We circumvent this by introduc-
ing two adjustments to the training scheme. First, we increase
the number of anchor points, i.e., the evaluated coordinates
based on which the loss is calculated. This is a common prac-
tice with coordinates for a higher prediction resolution [e.g.
[22], [12]]. Second, instead of fixed temporal offsets, e.g.
predicting future frames [5, 10, 15, . . .], we define a uniform
distribution over an offset range U{min ∈ N,max ∈ N}. For
each sample during training, an offset r is drawn from this
distribution while all other anchor points are evenly spread
accordingly.

[t1, t2, ..., tT] = [br ∗ 1

T
c, br ∗ 2

T
c, . . . br ∗ T

T
c]. (7)

For example, for 4 anchors from the integer range of
U{5, 30} frames, the variate r = 20 is drawn. The loss is cal-
culated based on the following frame offsets [t1, t2, t3, t4] =
[5, 10, 15, 20]. Non-integer frame indices are floored. No-
tice that the lower range is hence over-represented while the
upper range becomes less frequent. To reduce this over-
representation, the lower boundary of the range is set in
practice to a rather large number while the upper boundary is
set to be a bit larger than the maximal desired prediction off-
set. In the final system with a prediction range of 50 frames,
the uniform distribution is set to U{35, 55}.

4. EXPERIMENTS

Since our main aim throughout the experiments was to test
the limits and performance of our polynomial predictions,
all experiments were done with a simple Gated Recurrent
Units (GRU) [23] based encoder-attention-decoder architec-
ture. It consists of a two-layer encoder and a three-layer de-
coder while the attention is based on [24]. All layers have 32
units and use the default Keras GRU implementation.

Using multi-modal architectures, we have established that
modality selection, i.e., which of the modalities to use for
evaluation, quickly become the bottleneck. This means that
modality prediction is exchanged for modality selection for
testing. As multi-modality is not the focus of this work, we
followed [12] who conditioned their decoder on the modal-
ity label, both in testing and training. This underlying ar-
chitecture is then paired once with the polynomial framework
and once with the common coordinates prediction framework,
thus minimising external influences on the comparison.

Due to its free licence, we used the NGSim dataset [2]. It
consists of two motorway segments in the USA, recorded by
static traffic cameras at 10Hz and three different times of day
(dawn, midday, dusk). The tracks are divided into segments of
200 frames and temporarily split into train and test sets with
a 3:1 ratio. Due to the relatively small dataset, we refrained

from composing a validation set. The training set was then fil-
tered to half the amount of constant velocity, straight driving
tracks, leaving us with ∼7500 training samples and ∼3400
testing samples. Furthermore, we always predict from the first
to the last frame, i.e., no ‘warm-up phase‘ for the GRU. The
results in this section are either in Average Displacement Er-
ror (ADE) or in Root Mean Squared Error (RMSE) in metres
i.e., lower is better. Time is given in seconds.

Fig. 1: Axis-wise visualisation of a random prediction from
the test set. Right: coordinates prediction. Left: polynomial
prediction. The top and bottom rows show the lateral and
longitudinal axes, respectively. Notice how the polynomial
prediction results in smoother and less jagged trajectories.

4.1. Visual Evaluation

Both prediction frameworks give visually appealing results.
However, taking a closer look at a random example from
the test set (Figure 1), the inconsistencies of the coordinates
model are clearly visible. We explain this with two known
properties of neural networks - over-fitting and prediction
resolution.

During training, the network learns to over-fit its predic-
tion offsets, subsequently harming its generalisation capacity.
This is further discussed in subsection 4.3.

As noticed by works like [25], neural networks can reli-
ably regress values, but only to a certain precision. The small
regression inaccuracies which create the jagged trajectories
make for a small portion of the total loss, making them hard
to correct during training. By training our model on continu-
ous trajectories, we are able to reach smoother, more natural
looking results, as seen in Figure 1.

3

Offset
(sec)

Coords
baseline

Poly
(ours)

CS-LSTM
(M) [12]

MFP-1 [22]

1 0.43 0.55 0.62 0.54
2 1.00 0.93 1.27 1.16
3 1.72 1.64 2.09 1.90
4 2.76 2.64 3.10 2.78
5 3.98 3.85 4.37 3.83

Table 1: Results in RMSE of coordinates vs. polynomial
training on NGSim [2]. For reference, two other SotA results
are provided.

4.2. Quantifiable Evaluation

We further evaluate our framework on the common prediction
horizon of five seconds. The results are presented in Table 1
along with two other works as a reference.

In a further experiment, we train both output types with
both 5 and 25 anchor points. The results, shown in Fig-
ure 2 (right), are quite interesting. Looking at the 5 anchors
and the 25 anchors models separately, one can see favourable
performance of the polynomial models starting at around 1.5
seconds. However, even between both types of models a clear
improvement is visible, supporting our claim that models
better generalise with the increased amount of anchors.

Fig. 2: Left: evaluating the random anchoring scheme. Even
with as little as 2 anchors the polynomial accuracies exceed
the 25 fixed anchors. Right: the results with 5 and 25 anchors
per trajectory. For a given number of anchors, the polynomial
prediction models outperform the classical coordinates.

4.3. Random Anchoring

We claim that when training on a fixed set of predetermined
temporal offsets, the network only regards these few coordi-
nates, thus learning less about the movement itself. As coor-
dinates are fixed by definition, we test using our more flexible
polynomials. The first model is trained using two anchors at
t25 and t50 frames. The second model is trained on 25 evenly
spread frames, i.e. [t2, t4, t6, . . . , t48, t50]. The third model is
trained with two random anchors as described in Section 3.3.

The results are visualised in Figure 2 (left). Even with as

little as two random labels per sample, the network manages
to overcome the extreme over-fitting seen in the baseline and
generalise better.

Fig. 3: Left: the ADE curve for the extrapolation experiment.
Right: an example of an extrapolated longitudinal trajectory.

4.4. Extrapolation

To further test the generalisation capacities of our framework,
we studied the extrapolation to unseen time steps.

A coordinates model and a polynomial one were trained
on four seconds with four anchor points. We then evaluated
them on a six seconds time span at five frames per second. For
the coordinates extrapolation, we used NumPy’s polyfit
function and fit both a linear curve and one of the same order
as our polynomials.

The results averaging the entire test set are shown in Fig-
ure 3 (left). For the same polynomial degree our predictions
better extend to new horizons. Yet the linear extrapolation of
the coordinates prediction does similarly well. We use Fig-
ure 3 (right) as an example to explain this and show that often
a simple linear interpolation performs well on average, espe-
cially on a dataset, which mostly includes straight trajectories.

5. LIMITATIONS

Despite the more accurate predictions, we have also noticed
some limitations. For one, pedestrians typically require a
higher degree of freedom than our polynomials currently en-
able. E.g., imagine a sequence of walking, stopping for a bit
and then continuing to walk. Second, as seen in Figure 1, mi-
nor movements inside the lane are hard to represent. Yet such
cruising artefacts are often irrelevant for most applications.

6. CONCLUSIONS

We presented a novel lightweight framework for predicting
polynomial trajectories with artificial neural networks by ad-
justing only the output layer and the training scheme. With
the rather general constraint of continuity our framework im-
proves the generalisation of predicted trajectories. We are fur-
thermore positive other fields, e.g., flight path planning, could
also benefit from our development.

4

7. REFERENCES

[1] Kaiming He et al., “Mask R-CNN,” in Proceedings of
the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[2] US Department of Transportation, “NGSIM next gener-
ation simulation,” 2006.

[3] Robert Krajewski et al., “The HighD dataset: A drone
dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driving
systems,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp.
2118–2125.

[4] Agrim Gupta et al., “Social GAN: Socially acceptable
trajectories with generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2018, pp. 2255–2264.

[5] Namhoon Lee et al., “DESIRE: Distant future predic-
tion in dynamic scenes with interacting agents,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[6] Abduallah Mohamed et al., “Social-STGCNN: A so-
cial spatio-temporal graph convolutional neural network
for human trajectory prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[7] Vineet Kosaraju et al., “Social-bigat: Multimodal trajec-
tory forecasting using bicycle-gan and graph attention
networks,” in Advances in Neural Information Process-
ing Systems, 2019, pp. 137–146.

[8] Dirk Helbing and Peter Molnar, “Social force model for
pedestrian dynamics,” Physical review E, vol. 51, no. 5,
pp. 4282, 1995.

[9] Gianluca Antonini et al., “Discrete choice models of
pedestrian walking behavior,” Transportation Research
Part B: Methodological, vol. 40, no. 8, pp. 667–687,
2006.

[10] C. G. Prevost et al., “Extended kalman filter for state
estimation and trajectory prediction of a moving object
detected by an unmanned aerial vehicle,” in 2007 Amer-
ican Control Conference, 2007, pp. 1805–1810.

[11] A. Alahi et al., “Social LSTM: Human trajectory pre-
diction in crowded spaces,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2016.

[12] Nachiket Deo and Mohan M Trivedi, “Convolutional
social pooling for vehicle trajectory prediction,” in Pro-
ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, 2018, pp. 1468–
1476.

[13] Mayank Bansal et al., “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,”
Robotics Science and Systems (RSS), 2019.

[14] Mariusz Bojarski et al., “End to end learning for self-
driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[15] Rajesh Rajamani, Vehicle dynamics and control,
Springer Science & Business Media, 2011.

[16] Henggang Cui et al., “Deep kinematic models for phys-
ically realistic prediction of vehicle trajectories,” arXiv
preprint arXiv:1908.00219, 2019.

[17] Charles Richter et al., “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environ-
ments,” in Robotics Research, pp. 649–666. Springer,
2016.

[18] Alexandr Andoni et al., “Learning polynomials with
neural networks,” in International conference on ma-
chine learning, 2014, pp. 1908–1916.

[19] Juan-Manuel Pérez-Rúa et al., “Learning how to be
robust: Deep polynomial regression,” arXiv preprint
arXiv:1804.06504, 2018.

[20] Grigorios G Chrysos et al., “P-nets: Deep polynomial
neural networks,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2020, pp. 7325–7335.

[21] Alex Graves, “Generating sequences with recurrent neu-
ral networks,” CoRR, vol. abs/1308.0850, 2013.

[22] Charlie Tang and Russ R Salakhutdinov, “Multiple fu-
tures prediction,” in Advances in Neural Information
Processing Systems, 2019, pp. 15398–15408.

[23] Junyoung Chung et al., “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[24] Ashish Vaswani et al., “Attention is all you need,” in Ad-
vances in neural information processing systems, 2017,
pp. 5998–6008.

[25] J Bernardo et al., “Regression and classification using
gaussian process priors,” Bayesian statistics, vol. 6, pp.
475, 1998.

5

	1 Introduction
	2 Related Work
	3 Polynomial Prediction Framework
	3.1 Spatial Position Prediction
	3.2 Variance Estimation
	3.3 Training Scheme

	4 Experiments
	4.1 Visual Evaluation
	4.2 Quantifiable Evaluation
	4.3 Random Anchoring
	4.4 Extrapolation

	5 Limitations
	6 Conclusions
	7 References

