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ABSTRACT
The present Multi-view stereo (MVS) methods with supervised
learning-based networks have an impressive performance com-
paring with traditional MVS methods. However, the ground-truth
depth maps for training are hard to be obtained and are within
limited kinds of scenarios. In this paper, we propose a novel unsu-
pervised multi-metric MVS network, named M3VSNet, for dense
point cloud reconstruction without any supervision. To improve
the robustness and completeness of point cloud reconstruction, we
propose a novel multi-metric loss function that combines pixel-wise
and feature-wise loss function to learn the inherent constraints from
different perspectives of matching correspondences. Besides, we
also incorporate the normal-depth consistency in the 3D point cloud
format to improve the accuracy and continuity of the estimated
depth maps. Experimental results show that M3VSNet establishes
the state-of-the-arts unsupervised method and achieves comparable
performance with previous supervised MVSNet on the DTU dataset
and demonstrates the powerful generalization ability on the Tanks
& Temples benchmark with effective improvement.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.
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1 INTRODUCTION
Multi-view stereo (MVS) aims to reconstruct the 3D dense point
cloud frommulti-view images [6, 9], which has various applications
in augmented reality, virtual reality and robotics, etc. [24]. Big
progress has been made in the dense reconstruction with traditional
methods through the hand-crafted features (e.g. NCC) to calculate
the matching correspondences [10–12, 23, 28]. Though, the efficient
and robust methods of MVS in the large-scale environments are still
the challenging tasks [24]. Recently, deep learning is introduced to
relieve this limitation. The supervised learning-based MVSmethods
achieve significant progress especially improving the efficiency
and completeness of dense point cloud reconstruction [15, 27, 31,
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32]. These learning-based methods learn and infer the information
to handle matching ambiguity which is hard to be obtained by
stereo correspondences. However, these supervised learning-based
methods strongly depend on the training datasets with ground-
truth depth maps, which have limited kinds of scenarios and are
not easy to be available. Thus it is a big hurdle and may lead to bad
generalization ability in different complex scenarios [7, 13, 30, 31].
Furthermore, the robustness and completeness of dense point cloud
reconstruction still have a lot of room to be improved. Current
unsupervised learning-basedmethods aremainly based on the pixel-
wise level, which will cause incorrect matching correspondences
with low robustness [30][31]. Because for two identical images, the
difference will be huge as long as pixel offset from the perspective of
pixel level. However, they are almost the same from the perspective
of perception such as feature level. In addition, the human visual
system perceives the surrounding world depending on the object
features rather than a single image pixel [4]. Therefore, in order to
improve the robustness and completeness of unsupervised learning-
based MVS, it drives us to consider the similarity on object features.

In this paper 1, we propose a novel unsupervised multi-metric
MVS network, named M3VSNet as shown in figure 1, which could
infer the depth maps for dense point cloud reconstruction even
in non-ideal environments. Most importantly, we propose a novel
multi-metric loss function, namely pixel-wise and feature-wise loss
function. The key insight is that the human visual system perceives
the surrounding world by the object features [4]. In terms of this
loss function, both the photometric and geometric matching consis-
tency can be well guaranteed, which is more accurate and robust
compared with the only photometric constraints used in MVSNet
[31]. Specifically, we introduce the multi-scale feature maps from
the pre-trained VGG16 network as vital clues in the feature-wise
loss. Low-level feature representations learn more texture details
while high-level features learn semantic information with a large
receptive field. Different level features are the representations of
different receptive fields. By aggregating multi-scale features, our
proposed M3VSNet can consider both the low-level image texture
and the high-level semantic information. Therefore, the network
can well improve the robustness and accuracy of matching corre-
spondences. Compared with the network only using pixel-wise loss
which performs mismatch errors in some challenging scenarios
such as textureless, mirror effect or reflection and texture repeat
areas [24, 30, 31], M3VSNet can improve the robustness by consid-
ering the similarity between the multi-scale semantic features.

Besides, in order to further improve the performance of the esti-
mated depth maps, we incorporate the normal-depth consistency
in the world coordinate space to constraint the local surface tan-
gent obtained from the estimated depth maps to be orthogonal to

1Can Huang is the corresponding author
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the calculated normal. This regularization will improve the accu-
racy and continuity of the estimated depth maps. Moreover, we
utilize the multi-scale pyramid feature aggregation to construct the
3D cost volume with more contextual information to improve the
robustness and accuracy of feature correspondences.

Our main contributions are summarized as below:
• We propose a novel multi-metric unsupervised network,
which can work even in non-ideal environments, for multi-
view stereo without any ground-truth 3D training data.

• we propose a novel multi-metric loss function that considers
different perspectives of matching correspondences beyond
pixel value. Besides, we incorporate the normal-depth consis-
tency in the 3D point cloud format to improve the accuracy
and continuity of the estimated depth maps.

• Extensive experiments demonstrate that our proposedM3VSNet
outperforms the previous state-of-the-art unsupervisedmeth-
ods and achieves comparable performance with original
MVSNet on the DTU dataset and shows the excellent gen-
eralization ability on the Tanks & Temples benchmark with
effective improvement.

2 RELATEDWORK
2.1 Traditional MVS
Many traditional methods have been proposed in this field such as
voxel-based method [25], feature points diffusion [10] and the fu-
sion of estimated depthmaps [3]. First of all, the voxel-basedmethod
consumes many computing resources and its accuracy depends on
the resolution of voxel mainly [15]. Secondly, the blank area may
seriously suffer from the textureless problem in the method of fea-
ture points diffusion. Thirdly, the most used method is the fusion
of inferred depth maps, which gets the depth maps and then fuses
all the depth maps together to the final point cloud [5]. Besides,
many methods of improvement have been proposed. Silvano [11]
formulates the patch matches in 3D space and the progress can
be massively parallelized and delivered. Johannes [23] estimates
the depth and normal maps synchronously and uses photometric
and geometric priors to refine the image-based depth and normal
fusion. Though, the robustness needs to be improved when dealing
with non-ideal environments such as textureless or texture repeat
areas and no-Lambert surfaces.

2.2 Depth Estimation
The fusion of estimated depthmaps can decouple the reconstruction
into depth estimation and depth fusion. Depth estimation with
monocular video and binocular image pairs has many similarities
with the multi-view stereo here [19]. But there are exactly some
differences between them. Monocular video [34] lacks the real scale
of the depth actually and binocular image pairs always need to
rectify the parallel two images [8]. In this case, only the disparity
needs to be inferred without considering the intrinsic and extrinsic
of the camera. As for multi-view stereo, the input is the arbitrary
number of pictures. What’s more, the transformation among these
positions should be taken into consideration as a whole [31]. Other
obstacles such as multi-view occlusion and consistency [7] raise the
bar for depth estimation ofmulti-view stereo than that of monocular
video and binocular image pairs.

2.3 Supervised Learning MVS
Since Yao Yao proposed MVSNet in 2018 [31], many supervised
networks based on MVSNet have been proposed. To reduce GPU
memory consumption, Yao Yao introduces R-MVSNet with the help
of gated recurrent unit [32]. Gu uses the concept of the cascade to
shrink the cost volume [13]. Yi introduced two new self-adaptive
view aggregation with pyramid multi-scale images to enhance the
point cloud in textureless regions [33]. Luo utilizes the plane-sweep
volumes with isotropic and anisotropic 3D convolutions to get
better results [21]. In this kind of task, cost volume and 3D regu-
larization are highly memory-consuming. More importantly, the
ground-truth depth maps are derived from heavy labor.

2.4 Unsupervised Learning MVS
The unsupervised network utilizes the photometric and geometric
constraints to learn the depth by itself, which relief the compli-
cated artificial markers for ground-truth depth maps. Many works
explore unsupervised learning in monocular video and binocular
image pairs. Reza [22] presents the unsupervised learning method
for depth and ego-motion from monocular video. The paper uses
image reconstruction loss, 3D point cloud alignment loss and ad-
ditional image-based loss. Being similar to unsupervised learning
in monocular video and binocular image pairs [2], the losses of
MVS are also based on photometric and geometric consistency. Dai
[7] predicts the depth maps for all views simultaneously in a sym-
metric way. In the stage, cross-view photometric and geometric
consistency can be guaranteed. But this method consumes a lot
of GPU memory. Additionally, Tejas [17] proposes the simplified
network and traditional loss designation but an unsatisfied result.
Efforts are worthy to be paid in this direction.

3 M3VSNET
In this section, we introduce our proposed M3VSNet in detail. We
firstly describe the network architecture in section 3.1 to generate
initial depth map, then illustrate the normal-depth consistency
in section 3.2 to refine it in consideration of the orthogonality
between normal and local surface tangent. Finally, our proposed
novel multi-metric loss in section 3.3 is introduced by considering
different perspectives of matching correspondences to improve the
robustness and completeness of point cloud reconstruction.

3.1 Network Architecture
The basic architecture of our proposed M3VSNet consists of three
parts, namely pyramid feature aggregation, variance-based cost vol-
ume generation and 3D U-Net regularization, as shown in figure 1.
The pyramid feature aggregation extracts features from low-level to
high-level representations with more contextual information. Then
the same variance-based cost volume generation and 3DU-Net regu-
larization as MVSNet [31] are used to generate the initial depth map.
The advance architecture of M3VSNet consists of two parts, namely
normal-depth consistency and multi-metric loss. After generating
the initial depth map, we incorporate the novel normal-depth con-
sistency to refine it in consideration of the orthogonality between
normal and local surface tangent. More importantly, we construct
multi-metric loss, which consists of pixel-wise loss and feature-wise
loss. We will briefly describe each module in the following parts.
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Figure 1: The architecture of our proposedM3VSNet. It contains five components: pyramid feature aggregation, variance-based
cost volume generation, 3D U-Net regularization, normal-depth consistency and multi-metric loss function.
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Figure 2: The illustration of pyramid feature aggregation.

3.1.1 Pyramid Feature Aggregation. In previous supervised learning-
based network such as MVSNet [31], only the 1/4 feature is adopted
(1/4 represents a quarter of the size of the original reference image).
1/4 feature lacks multi-scale context information for matching cor-
respondences. Therefore, we propose to use the pyramid feature
aggregation that aggregates different scale features with contextual
information of different receptive fields [20]. Figure 2 shows the
details of this module. For the input images, the feature extraction
network is constructed to extract the aggregated 1/4 feature. In
the process of bottom-up, the stride of the layer 3, 6 and 9 is set
to 2 to get the four scale features in eleven-layer 2D CNN. Each
convolutional layer is followed by the structure of BatchNorm and
ReLU. In the process of up-bottom, each level of features is derived
from the concatenate by the upsampling of the higher layer and the
feature in the same layer with fewer channels. Especially, the 1/2
feature needs to be downsampled to be aggregated into the final 1/4
feature. To reduce the dimension of the final 1/4 feature, the 1 × 1
convolution for each concatenation is adopted. At last, we get the fi-
nal feature with 32 channels, which is an aggregation of contextual
information from low-level to high-level representations.

3.1.2 Cost volume and 3D U-Net regularization. The construction
of variance-based cost volume is based on the differentiable homog-
raphy warping with the number of different depth hypotheses D in

x
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Figure 3: The illustration of normal from depth

MVSNet [31]. Then 3D U-Net regularization is used to regularize
the 3D cost volume, which is simple but effective for aggregating
features. At last, the initial depth is derived from the so f t arдmin
operation with the probability volume after the regularization.

3.2 Normal-depth Consistency
The initial depth still contains some incorrect matching correspon-
dences. Therefore, to improve the quality of estimated depth maps
further, we incorporate the normal-depth consistency based on
the orthogonality between normal and local surface tangent [30].
The consistency will make the depth more reasonable in 3D space.
Normal-depth consistency can be divided into two steps. Firstly, the
normal should be calculated by the depth with the orthogonality.
Then the refined depth can be inferred by the normal and initial
depth according to the projection relationship. This module coop-
erating with 3D U-Net will refine the depth in 2D and 3D space
jointly, which improves the accuracy and continuity of depth.

As shown in figure 3, eight neighbors are selected to infer the
normal of the central point. Due to the orthogonality, the operation
of cross-product is used. For each central point pi , one set of the
neighbors can be recognized as pix and piy . If the depth Zi of pi
and the intrinsics K of camera are known, the normal Ñi can be
calculated as below:

Pi = K−1Zipi (1)
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Figure 4: The illustration of depth from normal

Ñi =
−−−−→
PiPix × −−−−→

PiPiy (2)

To add the credibility of final normal estimation Ni , mean cross-
product for eight neighbors can be presented as below:

Ni =
1
8

8∑
i=1

(Ñi ) (3)

The final refined depth maps can be available when the nor-
mal and initial depth maps are provided. In figure 4, for each pixel
pi (xi ,yi ), the depth of the neighbor pneiдhbor should be refined.
Their corresponding 3D points are Pi and Pneiдhbor . The normal of

Pi is
−→
Ni (nx ,ny ,nz ). The depth of Pi isZi and the depth of Pneiдhbor

is Zneiдhbor . We can get the equation −→
N ⊥ −−−−−−−−−−→

PiPneiдhbor . The re-
lationship is apparently reasonable due to the orthogonality and
surface consistency in the local surface. In summary, the depth
Zneiдhbor of the neighbors can be inferred by the depth and nor-
mal of the central point.

(K−1Zipi − K−1Zneiдhborpneiдhbor )

nx
ny
nz

 = 0 (4)

For the refined depth, eight neighbors are also taken into consid-
eration. Considering the discontinuity of normal in some edge or
irregular surface, the weightwi for the reference image Ii is intro-
duced to make depth more conforming to geometric consistency.
The weight is defined as below:

wi = e−α1 |▽Ii | (5)

Theweightwi depends on the gradient betweenpi andpneiдhbor ,
which means that the bigger gradient represents the less reliabil-
ity of the refined depth. In view of the eight neighbors, the final
refined depth Z̃neiдhbor is a combination of the weighted sum
of eight different directions. The final refined depth is the result
of regularization in 3D space, which improves the accuracy and
continuity of the estimated depth maps.

Z̃neiдhbor =
8∑
i=1

w ′
iZneiдhbor (6)

w ′
i ==

wi∑8
i=1wi

(7)

3.3 Multi-metric Loss
We propose a novel multi-metric loss function by considering dif-
ferent perspectives of matching in feature correspondence beyond
pixel, which is quite crucial and effective. The pixel-wise loss can
guarantee the matching correspondences with more texture details
and the feature-wise loss can make use of the semantic information.

The key idea embodied in multi-metric loss function is the pho-
tometric consistency crossing multi-views [3]. Given the reference
image Ir ef and source image Isrc , the corresponding intrinsic pa-
rameters are represented as Kr ef and Ksrc . Besides, the extrinsic
from Ir ef to Isrc is represented asT . For the pixel pi (xi ,yi ) in Ir ef ,
the corresponding pixel p′i (x

′
i ,y

′
i ) in Isrc can be calculated as:

p′i = KT (K−1Z̃ipi ) (8)

The overlapping area, named I ′src , from reference image Ir ef to
source image Isrc can be sampled using the bilinear interpolation.

I ′src = Isrc (p′i ) (9)

For the occlusion area, the value of the pixel in I ′src is set to zero.
Obviously, the maskM can be obtained when the pi is projected to
the external area of Isrc . Based on the prior constraint, the multi-
metric loss function L is formulated as the sum of pixel-wise loss
Lpixel and feature-wise loss Lf eature .

L =
∑

(γ1Lpixel + γ2Lf eature ) (10)

3.3.1 Pixel-wise Loss. For the pixel-wise loss, we only consider
the photometric consistency between the reference image Ir ef and
other source images. There are mainly three parts of this loss func-
tion. Firstly, the photometric loss compares the difference of pixel
value between Ir ef and I ′src . To relieve the influence of lighting
changes, the gradient of every pixel is integrated into Lphoto .

Lphoto =
1
m

∑
((Ir ef − I ′src ) + (▽Ir ef − ▽I ′src )) ·M (11)

Wherem is the sum number of valid points in the maskM .
Secondly, the loss of structure similarity (SSIM) LSSIM is set to

measure the similarity between Ir ef and I ′src . The operation S will
be 1 when Ir ef is the same as I ′src .

LSSIM =
1
m

∑ 1 − S(Ir ef , I ′src )
2

·M (12)

Thirdly, the smooth of final refined depth map can make it less
steep in the first-order domain and the second-order domain.

Lsmooth =
1
n

∑
(e−α2 |▽Ir ef |

���▽Z̃i ��� + e−α3 |▽2Ir ef |
���▽2Z̃i

���) (13)

Where n is the sum number of points in reference image Ir ef .
Finally, the total pixel-wise loss Lpixel can be illustrated as be-

low:

Lpixel = λ1Lphoto + λ2LSSIM + λ3Lsmooth (14)
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Figure 5: Feature-wise extraction from pre-trained VGG16

3.3.2 Feature-wise Loss. The network only using pixel-wise loss
performs mismatch errors in some challenging scenarios such as
textureless and texture repeat areas. In addition to the pixel-wise
loss, one of themain improvements ofM3VSNet is the use of feature-
wise loss. Just like in image style transfer, perceptual loss combining
with per-pixel loss improves the performance of style transfer in
quality [16]. The feature-wise loss will utilize more semantic infor-
mation for matching correspondences.

Due to the strong correlation between the estimated depth and
pyramid feature network mentioned in section 3.1.1, the high-level
feature is extracted from pre-trained VGG16 instead of the pyramid
feature network. Through the pre-trained VGG16 network, shown
in figure 5, the reference image Ir ef can extract more semantic
high-level information to construct the feature-wise loss function.
Here, we extract the layer 8, 15 and 22, which are one half, a quarter
and one-eighth the size of the original input images. As a matter of
fact, layer 3 output the same size of the original input image, which
is actually the reuse of pixel-wise loss function.

For every feature from the VGG16, we construct the loss based on
the concept of crossing multi-views. Being similar to section 3.3.1,
the corresponding pixel p′i in Fsrc can be available. The matching
features from Fr ef to Fsrc can be presented as below:

F ′src = Fsrc (p′i ) (15)
The feature domain has a bigger receptive field, which is inspired

by that human visual system perceives the scene by its features
rather than a single pixel. Therefore, the obstacle of non-ideal areas
can be relieved to some extent. The estimated final depth will detect
the similarity of features beyond pixel texture value, which benefits
from semantic information. The loss LF is represented as below:

LF =
1
m

∑
(Fr ef − F ′src ) ·M (16)

The final feature-wise loss function is a weighted sum of different
scale of features, which raises the robustness and completeness of
point cloud reconstruction. LF8 represents the feature of layer 8
from pre-trained VGG16.

Lf eature = β1LF8 + β2LF15 + β3LF22 (17)

4 EXPERIMENTS
We conduct abundant experiments of our proposed M3VSNet on
different datasets. Firstly, we evaluate M3VSNet on the DTU dataset
and our method outperforms all the previous unsupervised MVS
network [7, 17]. Then the ablation studies are carried out to find

out potential improvements from our proposed different modules
in section 4.3. At last, we test M3VSNet on the Tanks and Temples
benchmark to verify the generalization ability of our model.

4.1 Performance on DTU
The DTU dataset is a multi-view stereo dataset that has 124 different
scenes with 49 scans for each scene, which is collected by the
robotic arms [14][1]. With the lighting change, each scan has seven
conditions with the known pose. We use the same train-validation-
test split as in MVSNet [31] and MVS2 [7]. That is to say, the scenes
1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110,
114, 118 are selected as the test lists.

4.1.1 Implementation Detail. M3VSNet is implemented by Pytorch
[? ]. During the training phase, we only use the DTU ’s training
set without any ground-truth depth maps. The resolution of the
input image is the crop version of the original picture. That is 640
× 512. Due to the pyramid feature aggregation, the resolution of
the final depth is 160 × 128. Additionally, the hypothetical range
of depth is sampled from 425mm to 935mm and the depth sample
number D is set to 192. The model is trained with the batchsize as
4 in four NVIDIA RTX 2080Ti. By the pattern of data-parallel, each
GPU with around 11G available memory could deal with the multi-
batch. By using adam optimizer for 10 epochs, the learning rates
are set to 1e-3 for the first epoch and decrease by 0.5 for every two
epochs. For the balance of different weights in loss, we set γ1 = 1,
γ2 = 1, α1 = 0.1, α2 = 0.5, α3 = 0.5, λ1 = 0.8, λ2 = 0.2, λ3 = 0.067.
Beyond that, β1 = 0.2, β2 = 0.8, β3 = 0.4. During each iteration,
one reference image and two source images are used. During the
testing phase, the resolution of input image is 1600 × 1200.

4.1.2 Results on DTU. The official metrics [14] are used to evaluate
M3VSNet’ performance on theDTU dataset. There are three metrics
called accuracy, completeness and overall. The overall is the mean
value of accuracy and completeness. To prove the effectiveness
of M3VSNet, we compare M3VSNet with three classic traditional
methods such as Furu [10], Tola [26] and Colmap [23], and with
two classic supervised learning-based methods such as SurfaceNet
[15] and MVSNet [31], and with the other two existed unsupervised
learning-based methods such as Unsup_MVS [17] and MVS2 [7].

As shown in the table 1, our proposed M3VSNet outperforms the
existed two unsupervised learning-based methods [7, 17]. M3VSNet
surpasses Unsup_MVS [17] in all metrics and surpasses MVS2 in
accuracy and overall except completeness. Therefore, our proposed
M3VSNet establishes the state-of-the-arts unsupervised learning
methods for multi-view stereo reconstruction. Moreover, M3VSNet
surpasses the supervised learning-based MVSNet [31] with the
same setting depth hypothesis D = 192 in terms of the overall
performance of point cloud reconstruction. Compared with tradi-
tional MVS methods [9, 23, 26], our proposed M3VSNet achieves
significant improvement on the completeness of point cloud recon-
struction and outperforms Furu [10] and Tola [26] on the overall
quality except Colmap [23] but with high efficiency. For more de-
tailed information in point cloud reconstruction, figure 6 illustrates
the qualitative comparison. The reconstruction by M3VSNet has
more complete texture details than that without feature-wise loss.
With the aid of multi-metric, M3VSNet is more robust so that it
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(a) Ground Truth (b) MVSNet (c) M3VSNet w/o Feature-wise Loss (d) M3VSNet

Figure 6: Qualitative comparison of 3D reconstruction between M3VSNet and supervised methods on the DTU dataset. From
left to right: ground truth, MVSNet [31], M3VSNet without feature-wise loss and M3VSNet. Our proposed M3VSNet establishes
the state-of-the-arts unsupervised learning-based method and achieves comparable performance with MVSNet [31].

Table 1: Quantitative results on the DTUâĂŹs evaluation
set. Three classical MVS methods, two supervised learning-
based MVS methods and three unsupervised methods using
the distance metric (lower is better) are listed.

Method Mean Distance (mm)
Acc. Comp. overall.

Furu [10] 0.612 0.939 0.775
Tola [26] 0.343 1.190 0.766

Colmap [23] 0.400 0.664 0.532

SurfaceNet [15] 0.450 1.043 0.746
MVSNet(D=192) 0.444 0.741 0.592

Unsup_MVS [17] 0.881 1.073 0.977
MVS2 [7] 0.760 0.515 0.637

M3VSNet(D=192) 0.636 0.531 0.583

recovers more textureless or texture repeat areas and achieves com-
parable visual performance with original MVSNet [31].

4.2 Comparison With Unsupervised Methods
M3VSNet establishes the state-of-the-art unsupervised learning-
based MVS network by outperforming the other two existing un-
supervised MVS networks [7, 17]. One is unsup_mvs [17], which
is almost the first try in this direction but with poor performance
where the overall mean distance is 0.977. The other one is MVS2
[7]. Although MVS2 can get a little bit better completeness than

M3VSNet and can reach to 0.637 in the overall mean distance, it
consumes more GPU memory due to three cost volumes and reg-
ularization needed to be constructed, which is unaffordable for a
single NVIDIA RTX 2080Ti used in M3VSNet. As a result, our pro-
posed unsupervised method achieves the best performance on the
overall quality of point cloud reconstruction with high efficiency
where the accuracy of point cloud is significantly improved.

4.3 Ablation Studies
The section begins to analyze the effect of different modules pro-
posed in M3VSNet. There are mainly three contrast experiments
carried out. We will explore the effect of pyramid feature aggrega-
tion, normal-depth consistency and multi-metric loss.

Pyramid feature aggregation. The module can catch more
contextual information from low-level to high-level representations.
We use the feature pyramid aggregation to output the 1/4 feature. By
pyramid feature aggregation, the matching correspondences will be
guaranteed to a large extent. As shown in table 2, this module will
improve the metric of accuracy and completeness in mean distance.
Further, pyramid feature aggregation improves 2% in overall.

Normal-depth consistency. Based on the orthogonality between
local surface tangent and normal, normal-depth consistency is in-
troduced to regularize the depth in 3D space. Absolute depth error
is used to evaluate the quality of estimated depth. Here we use the
percentage of depth error within 2mm, 4mm, and 8mm compared
with ground-truth depth maps (Higher is better). As shown in ta-
ble 3, the performance with the aid of normal-depth consistency
surpasses that without normal-depth consistency in all metrics.
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Table 2: Comparison of the performance in pyramid feature
aggregation using the distance metric (lower is better).

Method Mean Distance (mm)
Acc. Comp. overall

without pyramid feature aggregation 0.638 0.554 0.596
with pyramid feature aggregation 0.636 0.531 0.583

Table 3: Comparison of the performance in normal-depth
consistency using the depth error (higher is better).

Depth Error (mm) % < 2 % < 4 % < 8

without normal-depth consistency 58.8 74.8 83.8
with normal-depth consistency 60.3 76.9 85.7

(a) Reference Image (b) Depth Map (b) Probability Map
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Figure 7: Qualitative comparison of normal-depth consis-
tency in depth maps and probability maps (White is 100%,
black is 0%). The performance of M3VSNet will be more ro-
bust and more accurate even in non-ideal environments.

Figure 7 demonstrates the comparison with and without normal-
depth consistency. For the same reference image, the depth map
with normal-depth consistency is more accurate than that without
normal-depth consistency. The depth of foot (the part framed in red)
in the first row is more ambiguous than that in the second row along
the edge and the plane. What’s more, the foot part is textureless
with reflective effect. Therefore, the robustness of performance with
normal-depth consistency will be guaranteed even in non-ideal
environments. Normal-depth consistency will make the estimated
depth more precise and reasonable in 3D space. Furthermore, in
probability maps, the probability of small local areas such as the
collar and the zipper (the part framed in red) will be high with the
aid of normal-depth consistency. The module also improves the
probability of correct matching correspondences in some different
planes. Figure 7 and table 3 can prove the significant benefits of
normal-depth consistency for accuracy and continuity.

Multi-metric loss. Multi-metric loss contains pixel-wise loss
and feature-wise loss, which learns the inherent constraints from
different perspectives of matching correspondences. The try to

Table 4: Comparison of the performance in the different loss
terms using the percentage of depth error (higher is better).

Depth Error (mm) % < 2 % < 4 % < 8

B 22.1 36.5 50.8
B+G 25.2 40.7 55.3

B+G+SSIM 27.5 44.2 58.8
B+G+SSIM+Smooth 57.5 75.2 85.4
Multi-metric loss 60.3 76.9 85.7

Table 5: Comparison of the performance in different loss
(lower is better). The scale of 1/2 represents that the feature
(corresponding to layer 8) extracted from the pre-trained
VGG16 networks is half the size of the original reference im-
age. The scales of 1/4, 1/8, 1/16 correspond to layer 15, 22, 29.

Method Mean Distance (mm)
Acc. Comp. overall

only pixel-wise 0.832 0.924 0.878
pixel-wise+1/4 feature 0.646 0.591 0.618

pixel-wise+1/2,1/4,1/8 feature 0.636 0.531 0.583
pixel-wise+1/2,1/4,1/8,1/16 feature 0.566 0.653 0.609

feature-wise loss is effective in previous related works [16][29][4].
We have compared the performance of different combinations of
pixel-wise loss and feature-wise loss. What’s more, how to select
the multi-scale features is also taken into consideration.

In the ablation study of loss terms in pixel-wise loss, the absolute
depth error is used to evaluate the performance of different loss
terms. As shown in table 4, B is the baseline with the only pho-
tometric loss in pixel level. G represents the gradient consistency
loss. As demonstrated in section 3.3, SSIM is represented as LSSIM
and smooth is represented as Lsmooth . The terms of G and SSIM
improve the results slightly and the term of Smooth contributes a
lot with effective improvement. In general, it’s apparent that the
proposed each loss will improve the performance of M3VSNet.

In the ablation study of loss terms in feature-wise loss, as illus-
trated in table 5, the overall of only pixel-wise loss is relatively
higher (lower is better). Besides, the different combinations of
feature-wise losses make it an impressive improvement. We do
some ablation studies on the different combinations of features
from pre-trained VGG16. Adding the 1/16 feature improves the
accuracy but deteriorate the completeness. By comparison, the
combination of 1/2, 1/4, 1/8 features achieves the best result.

4.4 Generalization Ability on Tanks & Temples
To evaluate the generalization ability of our proposed M3VSNet,
we use the intermediate Tanks and Temples benchmark that has
high-resolution images of outdoor large-scale scenes. The model
of our proposed M3VSNet trained on the DTU dataset is trans-
ferred to the Tanks & Temples benchmark without any finetuning.
The intermediate Tanks and Temples benchmark contains kinds
of images with the resolution of 1920 × 1056 and with the depth
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Table 6: Quantitative comparison of point cloud reconstruction on the Tanks and Temples benchmark (higher is better).
M3VSNet surpasses other unsupervised methods by the mean score in the leaderboard of intermediate T&T [18].

Method Mean Family Francis Horse Lightouse M60 Panther Playground Train

M3VSNet 37.67 47.74 24.38 18.74 44.42 43.45 44.95 47.39 30.31
MVS2 37.21 47.74 21.55 19.50 44.54 44.86 46.32 43.48 29.72

Family Francis Horse M60

Panther Playground Train Lighthouse

Figure 8: The performance of M3VSNet on the Tanks and Temples benchmark [18] without any finetuning. The quality of
dense point cloud reconstruction in large-scale scene shows the powerful generalization ability of M3VSNet.

hypothesis D = 160. Another core hyperparameter is the photo-
metric threshold in the process of depth fusion. For the same depth
maps, the different photometric thresholds will lead to different
performances. Higher photometric threshold will cause better accu-
racy but worse completeness. In turn, lower photometric threshold
will introduce better completeness but worse accuracy. For our
proposed M3VSNet, the photometric threshold is set to 0.6 and
we get the following results. As shown in table 6, the ranking is
selected from the leaderboard of the intermediate Tanks and Tem-
ples benchmark. Our proposed M3VSNet is better than MVS2 by
the mean score of 8 scenes, which is the best unsupervised MVS
network until April 17, 2020. In table 6, the higher the mean score,
the higher the ranking relatively. Further, the score of M3VSNet in
Playground scene is 47.39, which is better than the score of MVS2
43.48. Therefore, our proposed M3VSNet ranks higher than MVS2.
As a matter of fact, the final ranking is the mean of the independent
ranking of 8 scenes, which is different from the calculation method
of the mean score. The dense point clouds are presented in figure
8, which are reasonable and complete for Family, Francis, Horse,
M60, Panther, Playground, Train, Lighthouse scenes. Besides, the
robustness of our proposed M3VSNet also play an important role in
non-ideal areas in Tanks and Temples benchmark such as the sand
in the scene of Playground. In view of the above, the performance
in table 6 and figure 8 demonstrates the powerful generalization
ability of our proposed M3VSNet.

5 CONCLUSION
In this paper, we propose an unsupervised multi-metric network
for multi-view stereo reconstruction named M3VSNet, which im-
prove the robustness and completeness of point cloud even in non-
ideal environments. The proposed novel multi-metric loss function,
namely pixel-wise and feature-wise loss function, can capture more
semantic information to learn the inherent constraints from differ-
ent perspectives of matching correspondences. The performance
of point cloud reconstruction in non-ideal environments for ro-
bustness and completeness will also benefit from the multi-metric
loss mainly. Besides, with the incorporation of normal-depth con-
sistency, M3VSNet improves the accuracy and continuity of the
estimated depth maps by the orthogonality between normal and lo-
cal surface tangent. Extensive experiments show that our proposed
M3VSNet outperforms the previous state-of-the-arts unsupervised
learning-basedmethods and achieves comparable performancewith
original MVSNet [31] on the DTU dataset and demonstrates the
powerful generalization ability on the Tanks & Temples benchmark
[18] with effective improvement. In the future, more MVS datasets
with high precision are desired. To relief the high cost of datasets,
the domain transfer for different datasets can be improved and en-
hanced. What’s more, multi-task such as object detection, semantic
and instance segmentation, depth completion, etc. can be combined
with multi-view stereo reconstruction for the time to come.
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