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Abstract

Correlative imaging workflows are now widely used in bio-imaging and
aims to image the same sample using at least two different and comple-
mentary imaging modalities. Part of the workflow relies on finding the
transformation linking a source image to a target image. We are specifi-
cally interested in the estimation of registration error in point-based reg-
istration. We propose an application of multivariate linear regression to
solve the registration problem allowing us to propose a framework for the
estimation of the associated error in the case of rigid and affine transfor-
mations and with anisotropic noise. These developments can be used as a
decision-support tool for the biologist to analyze multimodal correlative
images.

1 Introduction

Correlative microscopy has become ubiquitous in bio-medical research. The
technique consists in observing the same sample under different complementary
imaging modalities in order to gain more insight. The most known association
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is undoubtedly correlative light-electron microscopy (CLEM), but it is possible
to combine other imaging modalities [14]. The process includes a registration
step in which the images of the different modalities are overlaid by estimating
the transformation linking them.
In this work, we only consider point-based registration requiring a set of matched
points, either fiducial points [7], anatomical or other natural landmarks [8] or
cloud of points, which can be used in this context after a segmentation step by
representing a contour or a surface by a cloud of points [10]. All these usages
can be modeled under a unique paradigm, that we will refer to as point-based
registration in the following, and we will name points used for the registration as
fiducial points, as opposed to points not used for the registration, called points
of interest (POIs). The localization of fiducial points is prone to error, due to
imaging resolution, method of localization or of sampling,... This will create a
registration error for all points of the image [9, 3, 1], having consequences on
the overlaying of points of interest. There is a clear need in the bio-medical
community to estimate errors in registration, as reflected by the reporting done
in biological papers using correlative approaches (see Fig. 1). In correlative
imaging, usual intensity metrics to assess the quality of the registration are usu-
ally not directly applicable due to the discrepancy of contents and scales. This
is why generic cross-validation methods like leave-one-out are usually used to
estimate the registration error as global values, based on fiducial points [13]. In
[10], error map representation based on the local average expected target regis-
tration error was proposed, using the statistical framework for rigid registration
developed in [3].
The case of rigid transformations and estimated error distribution has been de-
veloped by Moghari and Abolmaesumi [9]. Unfortunately the rigid model can
be too specific and fail to account for more general sample deformations. Cohen
and Ober [1] developed an error-in-variable model solving for affine transforma-
tions. However due to their assumption of heteroscedastic noise it is necessary
to estimate the noise distribution of each fiducial point which may not be pos-
sible from a practical point of view.

In this work, we provide a complete framework for the estimation of rigid
and affine transformations providing at the same time error estimation for mul-
tidimensional image registration. We propose a new formulation for affine reg-
istration based on a multivariate linear regression modeling. In addition, we
develop the maximum likelihood error estimation proposed in [9] under the
rigid registration constraints. These asymptotic expressions of the covariance
matrix of the registration errors allow us to give a graphical representation of
local accuracy as confidence ellipses at 95%, as opposed to an estimation of the
average error. Finally we demonstrate the application of these methods using
simulations and real data.

2



2 METHODS

2.1 General affine registration problem modeling

In our framework, in order to find the transformation linking a source image
and a target image of respective dimension r and m (that are typically 2 or
3 for 2D or 3D images), each fiducial point of the source image is assigned a
corresponding point on the target image. We denote by X the matrix containing
the coordinates of the n observed fiducial points xi ∈ Rr (i = 1, . . . , n) of the
source image, stacked in rows so that X is a n× r matrix. We similarly denote
by Y the matrix of size n×m containing the n observed fiducial points yi ∈ Rm
of the target image.

Let Z = [1 X] be the matrix of size n× (r+ 1) where all components of the
first column are 1. If the transformation between X and Y was affine, we would
have exactly Y = Zβ for some matrix β of size (r+1)×m. In practice of course
this relation is just an approximation of the true transformation and a modeling
error has to be added. Another error, the so-called localization error, comes from
the resolution limit of the images and the possible presence of noise, that make
the coordinates of the fiducial points inaccurate and so the theoretical relation
– even it was true – imprecise for the observed fiducial points. However, X
and Y gather the observed locations of fiducial points (and not the theoretical
locations of them) and thus already include the localization errors. For this
reason, we do not deal with an errors-in-variables model as studied in [1]. We
consider the following model relating Y and X:

Y
(n×m)

=
[
1 X

]
(n×(r+1))

× β
((r+1)×m)

+ ε
(n×m)

, (1)

where ε is a random matrix error of size n×m. Accordingly, each row εi of ε is
a vector of dimension m corresponding to the random modeling error associated
to the i-th pair of observed fiducial points (xi, yi).

We assume that the εi’s are independent, centered and follow the same mul-
tidimensional Gaussian distribution in Rm with unknown variance Σ of size
m×m, i.e. εi ∼ Nm(0,Σ) for all i = 1, . . . , n. We do not assume any particular
constraints on β and Σ apart, for the latter, to be a well-defined covariance
matrix. This means that our setting includes as particular cases: i) rigid trans-
formation, the case where the affine transformation reduces to a translation
combined with a rotation, as considered for instance in [3, 9, 10]; ii) isotropic
errors, when Σ is proportional to the identity matrix; and iii) uncorrelated er-
rors in each direction, the case when Σ is diagonal. Our general setting thus
accounts for a general affine transformation and a general error that can be
anisotropic and correlated along the different directions of the image. In this
setting, β and Σ are unknown. Our goal is then to be able to predict the location
y0 of a POI in the target image associated to x0 in the source image, and to get
a confidence region for the registration error, here the error associated to this
prediction. We provide in the following sections analytic expressions of these
confidence regions, making their computation fast and reliable. We consider the
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general affine model first and then discuss the more constrained rigid model.

2.2 Error estimation for an affine model

The affine model (1) is a multivariate linear regression model, see for instance
[5, Chapter 7]. The maximum likelihood estimators of β and Σ are respectively

β̂ = (Z
′
Z)−1Y and Σ̂ = ε̂′ε̂/n, where ε̂ = Y − Zβ̂ is the residuals matrix and

where we recall that Z denotes the matrix [1 X].
Once the model is fitted, we can predict the position y0 ∈ Rm in the target

image of a point of interest x0 ∈ Rr observed in the source image. Let z0 =
(1, x′0)′ ∈ Rr+1, then according to the affine model (1), y0 = β′z0 + ε0 for an
error ε0 ∼ Nm(0,Σ) independent of all εi’s, i = 1, . . . , n, meaning that ε0 is

independent of ε. The prediction of y0 is then ŷ0 = β̂
′
z0 and the prediction

error is:
y0 − ŷ0 = (β − β̂)

′
z0 + ε0.

This error is distributed as a centered Gaussian distribution in Rm with variance
(1 + z

′

0(Z
′
Z)−1z0)Σ. Plugging the estimate Σ̂, we obtain that the confidence

ellipsoidal region E(y0) of y0 at the significance level α is given by the inequality,
see [5]: for all y ∈ E(y0),

(y − β̂
′
z0)

′
(

n

n− r − 1
Σ̂

)−1
(y − β̂

′
z0)

≤ (1 + z
′

0(Z
′
Z)−1z0)

(
m(n− r − 1)

n− r −m

)
Fm,n−r−m(1− α),

where Fm,n−r−m(1− α) denotes the (1− α)th percentile of a Fisher’s law with
parameters m and n− r−m. By construction, E(y0) has a probability 1−α to
contain the unknown location y0. This confidence region is available analytically,
making its computation fast and accurate, and importantly, it depends on the
source location x0 through z0.

2.3 Error Estimation under the constraints of the rigid
model

Rigid models are considered in [3] and [9], among others. They correspond to the
particular case of (1) where r = m and β′ = [t Rθ] is composed of a translation
vector t ∈ Rm and of a rotation matrix Rθ of size m×m. Here θ is the parameter
of size m(m− 1)/2 characterizing the rotation. The transformation matrix β of
a rigid motion thus involves m(m + 1)/2 free parameters against m(m + 1) in
the affine case. As in the affine case we assume that each error εi independently
follows a Nm(0,Σ) and a maximum likelihood procedure can be used to estimate
the unknown parameters β (under the above constraints) and Σ. In the general
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case, this optimization problem amounts to find t, θ and Σ that maximize

n log

(
1√

(2π)m|Σ|

)

− 1

2

n∑
i=1

[yi − (Rθxi + t)]′Σ−1[yi − (Rθxi + t)].

This problem, discussed in [9], does not admit a closed-form solution and some
numerical optimization procedure are needed to solve it in the general case.
However, in the particular case where the errors are assumed to be isotropic,
meaning that Σ is proportional to the identity matrix, this problem reduces
to a constrained least squares optimization problem known as the orthogonal
Procrustes problem. An analytic solution in this setting is known, see [12, 6].
In our implementation, we use the latter solution in the isotropic case, while we
use a numerical solver in the general case.

For a rigid model, the prediction of the target point y0 = Rθx0 + t + ε0
associated to a new source point x0 is ŷ0 = Rθ̂x0 + t̂, where θ̂ and t̂ are the

maximum likelihood estimates. The registration error is thus y0−ŷ0 = e(t̂, θ̂)+ε0
where e(t̂, θ̂) = (Rθ−Rθ̂)x0 +(t− t̂) is an estimation error independent of ε0 (as
ε0 is independent of ε). Accordingly, the covariance matrix of the registration

error is Σe + Σ where Σe is the covariance matrix of e(t̂, θ̂). By the law of
propagation of uncertainties, Σe is asymptotically equal to JeΣt̂,θ̂J

′

e where Je is

the Jacobian matrix of the function e and Σt̂,θ̂ is the covariance matrix of (t̂, θ̂).

Denoting by q = m(m− 1)/2 the dimension of θ, Je is the m× (m+ q) matrix
given by

Je = −
(
Im | ∂1Rθ̂x0 | . . . | ∂qRθ̂x0

)
,

where Im is the identity matrix of size m and ∂kRθ denotes the (element-wise)
derivative of the matrix Rθ with respect to the element θk (k = 1, . . . , q) of θ. As
to Σt̂,θ̂, it is asymptotically equivalent to the inverse Fisher information matrix
of the model, in agreement with the asymptotic efficiency of the maximum
likelihood estimator (t̂, θ̂) [11], i.e. Σt̂,θ̂ ∼ I

−1(t, θ,Σ;X) where I is the block
matrix

I(t, θ,Σ;X) =


Itt Itθ1 · · · Itθq
I ′tθ1

...
I ′tθq

Iθθ

 .

The computation of I is approximated by linearisation in [9] when m = 3
and under the hypothesis that θ is small, but exact formulas can be derived.
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Specifically, we have

Itt = nΣ−1,

Itθk =

n∑
i=1

Σ−1∂kRθxi, k = 1, . . . , q,

Iθθ =

[
n∑
i=1

x′i∂kRθΣ
−1∂lRθxi

]
k,l=1,...,q

.

In our implementation, we use these exact formulas. In the end, the asymptotic
approximation of the variance of the registration error in the rigid case writes
JeΣ̂t̂,θ̂J

′

e + Σ̂, where Σ̂t̂,θ̂ = I(t̂, θ̂, Σ̂;X). Based on this variance, asymptotic
confidence ellipsoidal region can be constructed, exactly as carried out in the
affine case.

3 RESULTS

3.1 Accuracy of confidence region and of registration

In addition to test on real data as demonstrated on Figure 1, simulations were
performed with rigid and affine transformations and 10, 25 and 100 fiducial
points. Here we present the results for 95th percentile of the used Fisher’s law,
but any α could be used. When we compute a 95% prediction ellipse then theo-
retically the estimated point lies within the ellipse 95% of the time. Simulations
are repeated 10 000 times. Prediction ellipses are computed for 100 points of
interest drawn from a uniform distribution in the square of size 1024x1024 pix-
els. Fiducial points were drawn from a Gaussian distribution centered at the
point (256, 256) with isotropic variance equal to 500 in each direction.
The coverage rate is defined as the number of times the noisy point of interest
lies within the computed prediction ellipse, divided by the number of iterations.
This statistic is used to check whether the computed confidence ellipses are cor-
rect. The mean area of the prediction ellipses gives an indication of the size of the
estimated error and allows to assess the quality of the registration. Table 1 com-
pares the distribution of the coverage rate of 95% prediction ellipses computed
with the analytic methods of the rigid and affine models under a rigid or affine
transformation. Coverage rates distribution lies at 95% with high precision and
accuracy. Distribution of coverage rates for the rigid model is shifted above 95%
because the model assumes an asymptotic minimum variance. The distribution
converges towards 95% when the number of fiducial points is increased. The
affine model can still produce good estimations with rigid transformation and
is more robust than the rigid model. We use the same variant of leave-one-out
method as described in [13]. In this flavor, the prediction area is the disk whose
radius is the 95th quantile of the measured errors. Results presented in figure
2 show that with our method the coverage rate is correctly constant at 95%
and the mean area of predicted ellipses increase with the distance to the nearest
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fiducial point. The leave-one-out method underestimates the registration error
since the registration error estimated by the leave-one-out method is the same
at any location. As shown in figure 1(f), our confidence ellipses can be a useful
indication for the biologist in order to associate unknown structures (here q-dots
used for demonstration as POIs, when other structures were used as fiducials),
and complementary of the error maps proposed Fig.1(e). 1.

Table 1: Distribution of the coverage rate of 95% prediction ellipses (Cov%,
target value is 95%) for rigid and affine models (model) computed with ana-
lytic method under rigid and affine transformations (Transfo) using 10 and 100
fiducial points

Transfo Model Cov% n=10 Cov% n=100
mean/STD mean/STD

rigid rigid 99.35 / 0.08 95.68 / 0.21
rigid affine 94.98 / 0.14 94.57 / 0.22
affine rigid 3.53 / 17.51 2.00 / 14.07
affine affine 95.05 / 0.21 94.62 / 0.34

3.2 Testing the influence of attenuation bias in our bio-
medical context

Table 2: Distribution of coverage rates (min, mean, STD, max, 99% confidence
interval for mean coverage rate) for 95% prediction ellipses obtained by simula-
tion (model affine/transformation affine) including attenuation bias under the
condition of microscopy for 10, 25 and 100 fiducial points

n min mean STD max CI 99% of mean
10 94.54 94.94 0.13 95.31

[
94.90, 94.97

]
25 94.61 95.07 0.21 95.48

[
95.02, 95.13

]
100 94.08 94.68 0.28 95.33

[
94.61, 94.75

]
As explained in section 2.1, our observations X and Y in model (1) include

the localization error, and assume that both fiducials and POIs observations
contains noise. If we change the paradigm such that X does not include a
localization error (which could indeed be negligible in case of very different
scale), we are back to an errors-in-variable problem and we could suffer from the
attenuation bias. In a microscopy context, localization are often sought to have
a subpixelic resolution. Taking into account a broader range of case, assuming
a 3 pixels radius of error in the localization sounds a reasonable assertion for
fiducial points in the image with less resolution. So if we model the localization
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error in pixels according to N (0, I2) then the localization error lies within +/-
3 pixels. Results presented in table 2 clearly indicate there is a bias when
we assume both noise since computed 99% confidence intervals for the mean
coverage rate does not includes 95% which is the theoretical value. However the
bias never exceeded 1% deviation from the theoretical value. We conclude the
attenuation bias in our context is negligible.

4 DISCUSSION AND CONCLUSION

In this article we described the problem of point-based registration as a linear
least squares regression problem and propose tools for registration error esti-
mation. We show through simulations that the registration by linear regression
in the affine case is more robust than the rigid method. We demonstrate that
cross-validation registration error estimation like leave-one-out may be unreli-
able because it underestimates the registration error. We provide an imple-
mentation of registration and error estimation under rigid and affine models
in 2D and 3D as an ICY plugin [2]. This method provides analytic registra-
tion error estimation through prediction ellipses which is a visual and intu-
itive way of assessing the physical matching of two unknown structures and the
registration quality. Furthermore our source code is released and available at
https://github.com/anrcrocoval/ec-clem with video example on real data
https://www.youtube.com/watch?v=Rz1_MLqn6-k. Other registration meth-
ods can be used to account for non-linear deformations in biological samples [4].
Due to the non-linear property, registration error is difficult to estimate, but
our method could be directly extended to a local affine registration framework
to take into account local deformation.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Error representation in correlative imaging. (a) target (electron mi-
croscopy) with fiducials used; (b) registered source (fluorescence microscopy in
red, bright field in inverted gray); (c) overlay of registered source and target,
showing discrepancy of POIs (black and red); (d) Leave-one-out information
as in [13], only on fiducials; (e) Average expected error map as in [10]; (f)
Confidence ellipses at 95% for POIs as we propose. Zoom for full resolution.
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Figure 2: Coverage and mean area of prediction ellipses at different test points
for affine model computed with analytic and leave-one-out methods using 10,
25, or 100 fiducial points under an affine transformation
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